
www.manaraa.com

i

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Technical Debt: An empirical investigation of its harmfulness

and on management strategies in industry

TERESE BESKER

DIVISION OF SOFTWARE ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY

GOTHENBURG, SWEDEN 2020

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28193674

28193674

2020

www.manaraa.com

ii

Technical Debt: An empirical investigation of its harmfulness

and on management strategies in industry

TERESE BESKER

Doktorsavhandlingar vid Chalmers tekniska högskola

ISBN: 978-91-7905-274-4
Series number: 4741

ISSN: 0346-718X

Technical Report No 182D

Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Copyright ©2020 Terese Besker

except where otherwise stated.

All rights reserved.

Printed by Chalmers Reproservice,

Göteborg, Sweden 2020.

www.manaraa.com

iii

“The first step is to establish that something is possible; then

probability will occur.”

Elon Musk

www.manaraa.com

iv

www.manaraa.com

v

Abstract

Background: In order to survive in today's fast-growing and ever fast-changing

business environment, software companies need to continuously deliver customer

value, both from a short- and long-term perspective. However, the consequences of

potential long-term and far-reaching negative effects of shortcuts and quick fixes

made during the software development lifecycle, described as Technical Debt (TD),

can impede the software development process.

Objective: The overarching goal of this Ph.D. thesis is twofold. The first goal is to

empirically study and understand in what way and to what extent, TD influences

today’s software development work, specifically with the intention to provide more

quantitative insight into the field. Second, to understand which different initiatives can

reduce the negative effects of TD and also which factors are important to consider

when implementing such initiatives.

Method: To achieve the objectives, a combination of both quantitative and qualitative

research methodologies are used, including interviews, surveys, a systematic

literature review, a longitudinal study, analysis of documents, correlation analysis, and

statistical tests. In seven of the eleven studies included in this Ph.D. thesis, a

combination of multiple research methods are used to achieve high validity.

Results: We present results showing that software suffering from TD will cause various

negative effects on both the software and the developing process. These negative

effects are illustrated from a technical, financial, and a developer’s working situational

perspective. These studies also identify several initiatives that can be undertaken in

order to reduce the negative effects of TD.

Conclusion: The results show that software developers report that they waste 23% of

their working time due to experiencing TD and that TD required them to perform

additional time-consuming work activities. This study also shows that, compared to all

types of TD, architectural TD has the greatest negative impact on daily software

development work and that TD has negative effects on several different software

quality attributes. Further, the results show that TD reduces developer morale.

Moreover, the findings show that intentionally introducing TD in startup companies

can allow the startups to cut development time, enabling faster feedback and

increased revenue, preserve resources, and decrease risk and thereby contribute to

beneficial effects. This study also identifies several initiatives that can be undertaken

in order to reduce the negative effects of TD, such as the introduction of a tracking

process where the TD items are introduced in an official backlog. The finding also

indicates that there is an unfulfilled potential regarding how managers can influence

the manner in which software practitioners address TD.

Keywords: Software Engineering, Technical Debt, Software Architecture, Software Quality,

Software Developing Productivity, Developer Morale, Empirical Research, Mixed-methods

www.manaraa.com

vi

www.manaraa.com

vii

Acknowledgments

First of all, I would like to express my deepest gratitude and appreciation to my

main supervisor, Professor Jan Bosch, for his encouragement, support,

guidance, and engagement. You continuously raise the bar with me, and, most

importantly, make me believe I can reach my goals.

Next, I would like to express my sincere appreciation to my second supervisor,

Professor Antonio Martini, for always sharing his technical knowledge and

expertise. Besides being a great friend, your support, ideas, and comments have

significantly improved the quality of my research.

I would also like to thank my colleagues David Issa Mattos and Magnus Ågren,

for fruitful discussions and great friendship.

I want to thank all the partners at the Software Center for supporting my

research and ensuring that we conduct research into highly relevant topics from

both an academic and an industrial software perspective.

Finally, I would like to express my sincere gratitude to my family and friends

for their love and continuous encouragement.

Terese Besker

Gothenburg, Sweden, 2020

www.manaraa.com

viii

www.manaraa.com

ix

List of Publications

Appended Papers

This Ph.D. thesis is based on the work contained in the following peer-reviewed

publications:

[A] T. Besker, A. Martini, and J. Bosch, “Managing architectural technical debt: A

unified model and systematic literature review,” Journal of Systems and Software,

vol. 135, pp. 1–16, 2018.

[B] T. Besker, A. Martini, and J. Bosch, “Time to Pay Up – Technical Debt from a

Software Quality Perspective,” In proceedings of the 20th Ibero American

Conference on Software Engineering (CibSE) @ ICSE17, 2017.

[C] T. Besker, A. Martini, and J. Bosch, "The Pricey Bill of Technical Debt – When and

by Whom Will it be Paid?” Proceedings of IEEE International Conference on

Software Maintenance and Evolution (ICSME), Shanghai, China, pp. 13–23, 2017.

[D] T. Besker, A. Martini, and J. Bosch, "Impact of Architectural Technical Debt on

Daily Software Development Work – A Survey of Software Practitioners,”

Proceedings in 43th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Vienna, 2017, pp. 278–287.

[E] T. Besker, A. Martini, and J. Bosch, “Software developer productivity loss due to

technical debt – A replication and extension study examining developers’

development work,” Journal of Systems and Software, vol. 156, pp. 41–61, 2019.

[F] T. Besker, H. Ghanbari, A. Martini, and J. Bosch, “The Influence of Technical Debt

on Software Developer Morale,” Journal of Systems and Software, vol. 167, pp.

110586, 2020.

[G] A. Martini, T. Besker, and J. Bosch, “Technical Debt Tracking: Current State of

Practice – A Survey and Multiple Case-Study in 15 Large Organizations,” Science

of Computer Programming, 2017.

[H] T. Besker, A. Martini, R. E. Lokuge, K. Blincoe, and J. Bosch, “Embracing

Technical Debt, from a Startup Company Perspective,” IEEE International

Conference on Software Maintenance and Evolution (ICSME), pp. 415–425, 2018.

www.manaraa.com

x

[I] T. Besker, A. Martini, and J. Bosch, “How Regulations of Safety-Critical Software

Affect Technical Debt,” 45th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), pp. 74–81, 2019.

[J] T. Besker, A. Martini, and J. Bosch, “Technical debt triage in backlog management,”

Proceedings of the Second International Conference on Technical Debt, Montreal,

Quebec, Canada, 2019, pp. 13–22, 2019.

[K] T. Besker, A. Martini, and J. Bosch, “Carrot and Stick approaches when managing

Technical Debt,” Proceedings of the Third International Conference on Technical

Debt, co-located with ICSE, South Korea, 2020. In print. This paper was granted

the Best Paper Award.

www.manaraa.com

xi

Other Publications
The following publications are peer-reviewed and published but not appended to this

thesis:

[L] T. Besker, A. Martini, and J. Bosch, "A Systematic Literature Review and a

Unified Model of ATD,” Proceedings in 42th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), Cyprus, 2016, pp. 189–197.

[M] T. Besker, A. Martini, and J. Bosch, “Technical Debt Cripples Software

Developer Productivity – A longitudinal study on developers’ daily software

development work,” Proceedings in First International Conference on Technical

Debt @ ICSE18, 2018.

[N] A. Martini, T. Besker, and J. Bosch, “The introduction of Technical Debt Tracking

in Large Companies,” Proceedings in the 23rd Asia-Pacific Software Engineering

Conference (APSEC), Hamilton, New Zealand, 2017.

[O] T. Besker, A. Martini, J. Bosch, and M. Tichy, "An investigation of technical debt

in automatic production systems," Proceedings of the XP2017 Scientific

Workshops, Cologne, Germany, 2017.

 [P] H. Ghanbari, T. Besker, A. Martini, and J. Bosch, “Looking for Peace of Mind?

Manage your (Technical) Debt – An Exploratory Field Study,” Proceedings in the

International Symposium on Empirical Software Engineering and Measurement

(ESEM), Toronto, Canada, 2017

[Q] P. Avgeriou, D. Taibi, A. Ampatzoglou, F. A. Fontana, T. Besker, A.

Chatzigeorgiou, V. Lenarduzzi, A. Martini, N. Moschou, I. Pigazzini, N.

Saarimäki, D. Sas, S. Soares de Toledo, and A. Tsintzira, “An Overview and

Comparison of Technical Debt Measurement Tools,” Revised version submitted

to IEEE Software Journal, 2020

[R] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. Francesca Arcelli,

“Technical Debt Prioritization: State of the Art. A Systematic Literature Review,”

Revised version submitted to Journal of Systems and Software, 2020.

www.manaraa.com

xii

www.manaraa.com

xiii

Personal Contribution

For all publications where I am the first author, my contribution is listed below using

the CRediT (Contributor Roles Taxonomy) author statement [1], where I made the

following contributions:

a) Conceptualization – Formulation of overarching research goals and aims.

b) Methodology – Design of methodology and creation of research models.

c) Validation/Verification – Focus on the overall replication/reproducibility of results.

d) Formal Analysis – Application of statistical techniques to analyze or synthesize data.

e) Investigation – Conducting the research process and performing data collection.

f) Data Curation – Activities to annotate scrub data and maintain research data.

g) Writing – Original draft, review, and editing.

h) Preparation – Creation and/or presentation of the published work.

i) Project Administration – Management and coordination responsibility for research

activities.

For the included publication paper G, in which I am listed as a second author, I made

the following contributions:

a) Conceptualization – Formulation of overarching research goals and aims.

b) Methodology – Design of methodology and creation of research models.

c) Investigation – Conducting the research process and performing data collection.

e) Data Curation – Activities to annotate scrub data and maintain research data.

e) Writing (partly) – Original draft, review, and editing.

i) Project Administration – Management and coordination responsibility for research

activities.

www.manaraa.com

xiv

www.manaraa.com

xv

Table of Content

1. Introduction ... 1

2. Background and Related Work .. 5

2.1. The concept of Technical Debt .. 5

2.2. The impact of Technical Debt in the software development industry 9

2.3. Technical Debt in context-specific domains .. 13

3. Research Motivation .. 17

4. Research Questions .. 19

5. Relationship between Studies and Research Questions 20

5.1. Research studies addressing RQ1 .. 20

5.2. Research studies addressing RQ2 .. 21

5.3. Research studies addressing RQ3 .. 21

6. Methodology ... 23

6.1. Research Approaches .. 24

7. Data analysis .. 31

7.1. Quantitative Data Analysis .. 31

7.2. Qualitative Data Analysis .. 31

7.3. Threats to Validity ... 32

8. Overview of Papers and Findings... 37

8.1. Paper A: Managing Architectural Technical Debt: A unified model and systematic

literature review ... 37

8.2. Paper B: Time to Pay Up – Technical Debt from a Software Quality Perspective 39

8.3. Paper C: The Pricey Bill of Technical Debt – When and by Whom Will it be Paid?

 .. 41

8.4. Paper D: Impact of Architectural Technical Debt on Daily Software Development

Work – A Survey of Software Practitioners .. 42

8.5. Paper E: Software Developer Productivity Loss Due to Technical Debt – A

replication and extension study examining developers’ development work 44

8.6. Paper F: The Influence of Technical Debt on Software Developer Morale 45

8.7. Paper G: Technical Debt Management: Current State of Practice 46

8.8. Paper H: Embracing Technical Debt, from a Startup Company Perspective 47

8.9. Paper I: How Regulations of Safety-Critical Software Affect Technical Debt 48

8.10. Paper J: Technical debt triage in backlog management ... 49

www.manaraa.com

xvi

8.11. Paper K: Carrot and Stick approaches when managing Technical Debt................ 49

9. Managing Architectural Technical Debt ... 51

9.1. Introduction ... 51

9.2. Background .. 54

9.3. SLR method ... 56

9.4. Results from the retrieval of publications .. 62

9.5. Results .. 67

9.6. Importance of ATD and a need for a Unified Model ... 72

9.7. Discussion.. 73

9.8. Related work .. 78

9.9. Conclusions ... 79

10. Technical Debt from a Software Quality Perspective 81

10.1. Introduction ... 81

10.2. Related work .. 82

10.3. Methodology .. 83

10.4. Results and findings... 86

10.5. Discussions and Limitations .. 92

10.6. Threats to validity .. 94

10.7. Conclusion ... 94

11. The Pricey Bill of Technical Debt .. 97

11.1. Introduction ... 97

11.2. Related work .. 99

11.3. Methodology .. 100

11.4. Results and Findings .. 104

11.5. Discussion.. 115

11.6. Threats to Validity and Verifiability .. 116

11.7. Conclusion ... 117

12. Impact of Architectural Technical Debt on Software Development Work .. 119

12.1. Introduction ... 119

12.2. Related work .. 122

12.3. Methodology .. 124

12.4. Results and Analysis .. 126

12.5. Discussion and limitations ... 134

www.manaraa.com

xvii

12.6. Threats to validity and Verifiability... 136

12.7. Conclusion ... 136

13. Software Developer Productivity Loss Due to Technical Debt 139

13.1. Introduction ... 139

13.2. Research Questions.. 142

13.3. Related Work ... 142

13.4. Methodology .. 144

13.5. Results and Findings .. 154

13.6. Discussion.. 171

13.7. Verifiability, limitations, and threats to validity .. 175

13.8. Conclusion and future work... 178

14. The Influence of Technical Debt on Software Developer Morale 181

14.1. Introduction ... 181

14.2. Theoretical background ... 184

14.3. Methodology .. 191

14.4. Results .. 197

14.5. Discussion.. 213

14.6. Limitations, and Threats to Validity .. 217

14.7. Conclusion ... 219

15. Technical Debt Tracking: Current State of Practice 221

15.1. Introduction ... 221

15.2. Methodology .. 223

15.3. Results .. 230

15.4. Discussion.. 245

15.5. Conclusion ... 251

16. Technical Debt, from a Startup Company Perspective 253

16.1. Introduction ... 253

16.2. Background and related work .. 254

16.3. Research Methodology .. 257

16.4. Description of cases ... 260

16.5. Results .. 261

16.6. Discussion.. 268

16.7. Conclusion ... 273

www.manaraa.com

xviii

17. Technical Debt in Safety-Critical Software .. 275

17.1. Introduction ... 275

17.2. Related work .. 277

17.3. Research method.. 278

17.4. Results and findings... 283

17.5. Discussion.. 288

17.6. Limitations and threats to validity ... 291

17.7. Conclusion ... 291

18. Prioritization of Technical Debt in Backlogs .. 293

18.1. Introduction ... 293

18.2. Research model and background ... 294

18.3. Research Methodology .. 297

18.4. Results and findings... 302

18.5. Discussion.. 309

18.6. Study Limitations .. 312

18.7. Conclusion ... 312

19. Carrot and Stick approaches when managing Technical Debt 313

19.1. Introduction ... 313

19.2. Conceptual framework .. 315

19.3. Background and related work .. 316

19.4. Methodology .. 318

19.5. Results and findings... 324

19.6. Discussion and limitations ... 330

19.7. Implications for future practice ... 331

19.8. Threats to validity .. 332

19.9. Conclusion ... 333

20. Answering the Thesis’ Research Questions ... 335

20.1. RQ1 – Consequences of TD in today's software industry 335

20.2. RQ2 – Initiatives to reduce the negative effects of TD in today's software industry

 .. 337

20.3. RQ3 – Factors affecting TD management in context-specific domains 339

21. Future Research .. 341

21.1. Technical Debt in Machine Learning applications .. 341

www.manaraa.com

xix

21.2. Process Debt .. 342

22. Conclusion .. 343

23. Bibliography... 347

www.manaraa.com

xx

www.manaraa.com

1

1. Introduction

In order to survive in today's fast-growing and ever-changing business environment,

large-scale software companies need to continuously deliver customer value, both from a

short- and long-term perspective. Today's engineering of software involves several

different activities, such as development, design, testing, implementation, and

maintenance of software [2]. During the software development lifecycle, companies need

to consider the tradeoffs between the time and effort spent on increasing the overall

quality of the software, and the costs of the software development process in terms of the

required time and resources. In general, software companies strive to balance the quality

of their software with the ambition of increasing the efficiency and decreasing the costs

in each lifecycle phase, by reducing time and resources deployed by the development

teams.

Examples of this tradeoff can be illustrated by scenarios where software companies

deliberately implement sub-optimal solutions, such as, e.g., implementation of “quick

fixes” or “cutting corners” in order to reduce the development time and thereby shorten

the time-to-market, or when they are forced to implement sub-optimal solutions due to

the fact that available resources are limited.

Even if the best intention is to go back and refactor the sub-optimal solution immediately

afterward, there is a tendency for these refactoring tasks to be postponed since, typically,

there are other important deadlines in the near future, and these tasks are thus often down

prioritized. There is also the scenario where sub-optimal solutions are implemented

unintentionally due to, e.g., lack of knowledge, guidelines, or best practices.

As a result of these scenarios, the sub-optimal solutions in the software gradually grow,

and the short-term implemented quick fixes in the code base live on and become more

deeply embedded. Last-minute hacks remain in the code and turn into features that the

users depend upon, documentation and coding conventions are potentially also ignored,

and eventually, the original architecture degrades and becomes obfuscated [3]. When new

requirements that necessitate the software to be extended and altered start appearing, these

implemented sub-optimal solutions can become costly to refactor and can also cause

delays and thereby also impede both innovation and expansion of the software system.

The result of this impediment is the accrual of what is described as Technical Debt (TD).

The TD metaphor was first coined at OOPSLA ‘92 by Ward Cunningham [8], to describe

the need to recognize the potential long-term negative effects of immature code

implemented during the software development lifecycle. Cunningham used the financial

terms “debt” and “interest” when describing the concept of TD: “Shipping first-time code

is like going into debt. A little debt speeds development so long as it is paid back promptly

with a rewrite. Objects make the cost of this transaction tolerable. The danger occurs

when the debt is not repaid. Every minute spent on not-quite-right code counts as interest

on that debt.”

An additional more recent definition of TD was provided by Avgeriou et al. [4], who

define TD as “In software-intensive systems, technical debt is a collection of design or

www.manaraa.com

2

implementation constructs that are expedient in the short term, but set up a technical

context that can make future changes more costly or impossible. Technical debt presents

an actual or contingent liability whose impact is limited to internal system qualities,

primarily maintainability and evolvability”.

An illustration of the above statement – “technical context where the future changes are

more costly or impossible” – may be exemplified by a situation where the software

experiencing TD becomes fragile in terms of the occurrence of unexpected side-effects

or when changes to one part of the software cause unpredicted failures in other unrelated

parts. This situation could make software practitioners avoid altering the software

actively.

If the sub-optimal solution refers to the architecture of the system, this can be illustrated

by a situation where the architecture is inflexible in terms of resistance to changeability.

Without first implementing extensive, costly, risky, and time-consuming architectural

refactoring, the possibility of implementing new features is significantly reduced. In a

worst-case scenario, software companies could reach a point where they have accrued so

much TD that they spend more time maintaining and containing their legacy software

than adding new features for their customers [3]. Accumulated negative consequences of

TD can even lead to a crisis point when a huge, costly refactoring or a replacement of the

entire software needs to be undertaken [5].

Even if there are some special situations and circumstances where deliberately taking on

TD can be beneficial for companies (e.g., in startup companies [6]), TD is in general

considered to be detrimental to the long-term success of software [7], and, left unchecked,

can result in compromised quality attributes such as maintainability, reusability,

performance, and the ability to add new features. In addition to potential quality

complications, TD can also hinder the software development process by causing an

excessive amount of waste of working time in terms of low developer productivity,

project delays, high defect rates [8] and TD can also cause significant economic losses

[9]. Further, several studies suggest that TD also has a negative influence on developers’

emotions [10],[11],[12] and on their morale [7],[13].

Although the concept and harmfulness of TD are gaining importance from an academic

perspective, software companies still struggle with paying TD management sufficient

attention in practice. There are several major reasons for this, such as the difficulty of

implementing prevention mechanics to avoid introducing TD in the first place, of raising

awareness of the negative effects TD has on the overall software development process,

and difficulties in understanding and quantifying the level of negative impact from TD.

Moreover, when TD is present in the software, the only significantly effective way of

reducing it is to refactor the software. However, the refactoring activities of the different

identified TD items need to be prioritized both individually and also in competition with,

for example, the implementation of new features. In this sense, software managers’

mindset can also have an impact on the way practitioners address, prioritize, and focus

their attention on TD remediation activities.

Furthermore, there are several different types of TD [14],[15],[7], such as, e.g.,

Architectural TD, Documentation TD, Requirement TD, Code TD, Test TD, and

www.manaraa.com

3

Infrastructure TD. These different TD types affect different parts of software

development during different development phases, and they also have different levels of

negative impact on the overall software development process. This Ph.D. thesis focuses

on all TD types, even if some of the included publications more specifically focus on the

Architectural TD (ATD) type. ATD is often described as the most important source of

TD [16] as well as the most frequently encountered type of TD [17].

The overall goal of this Ph.D. thesis is to study and understand in what way and to what

extent TD influences today’s software development work from various perspectives, and

also to understand what different initiatives can be undertaken to reduce the negative

effects of TD.

The remainder of this thesis is structured in 23 chapters: Chapter 2 describes the

Background and Related Work, and Chapter 3 introduces the Research Motivation.

Chapter 4 describes the Research Questions. Chapter 5 presents the Relationship between

Studies and Research Questions. Chapter 6 and 7 discuss the Methodology and the Data

analysis, respectively. Chapter 8 presents an Overview of Papers and Findings. Chapter

9 to 19 presents results from the eleven included publications. Chapter 20 presents the

Answers to the Thesis’ Research Questions. In chapters 21 and 22, future work and

conclusions are presented.

The overall structure of this Ph.D. thesis is illustrated in Figure 1.

Figure 1: Thesis overview

www.manaraa.com

4

www.manaraa.com

5

2. Background and Related Work

This thesis studies TD from different perspectives, and in order to provide the reader with

the necessary information needed to better understand the remainder of the thesis, this

chapter provides background information and describes the related work of the thesis.

Figure 2: A background overview model of Technical Debt, as portrayed in this Ph.D. thesis.

Figure 2 is an overview model that illustrates the essential aspects of the concerned

included research topics, which are all addressed in this Ph.D. thesis. As presented in the

figure, the topics are organized using a three-dimensional model where the first dimension

addresses the concept of TD, followed by a second dimension where the harmfulness and

TD management strategies are in focus, followed by the third dimension which explicitly

assesses TD in two different company context-specific domains.

The following sections describe more in detail how each of these dimensions relates to

each other and also how the aspects in each dimension relate to each other.

2.1. The concept of Technical Debt

Figure 3 illustrates the covered aspects of the first dimension in the overview Figure 2,

“The concept of TD,” and how these aspects relate to the other dimensions. The figure

shows, for example, that causes of the different investigated TD types are assessed in the

www.manaraa.com

6

second dimension, and that debt, principal, and interest act as input information to the

second dimension.

Figure 3: First dimension: The concept of TD

2.1.1. TD taxonomy

As illustrated in figure 3, TD can be categorized in different ways, depending on the

perspective adopted. For example, Kruchten et al. [18] provide a categorization based on

the visibility of different elements. As illustrated in Figure 4, their model illustrates visible

elements, such as new functionality to add and defects to fix, and invisible elements (those

visible only to software developers). Kruchten et al. suggest that only the invisible

elements should be considered as TD, where they distinguish between evolution and

quality issues.

Figure 4: The TD landscape, distinguishing between evolution and quality issues [18].

www.manaraa.com

7

Yet another classification of the TD landscape is provided by Steve McConnell [19], who

categorizes TD based on whether the TD was incurred intentionally or unintentionally.

Unintentionally incurred TD is the non-strategic result of doing a poor job. In some cases,

this type of debt can be incurred unknowingly, for example, if a company acquires another

company that has accumulated significant TD and which was not identified until after the

acquisition. Intentionally incurred TD is commonly found when a company makes a

conscious decision to optimize for the present rather than for the future [19].

Similar to McConnell’s classification, Martin Fowler [20] provides a categorization,

illustrated in Figure 5, where he uses a four-quadrant grid considering the following

characteristics: Reckless, Prudent, Deliberate, and Inadvertent. These characteristics

comprise what is commonly called the TD Quadrant and allow the classification of the

debt by analyzing whether the TD was inserted intentionally or not, and, in both cases,

whether it can be considered to be the result of a careless action or was inserted with

prudence.

Prudent TD is deliberately introduced because the team is aware of the fact that they are

taking on TD and put some thought into whether the payoff for an earlier release is greater

than the costs of paying the debt off. A team ignorant of design practices accumulates

reckless TD without even realizing the negative consequences of doing so [20].

Martin Fowler argues that reckless TD may not be inadvertent. A team could know about

good design practices and even be capable of practicing them, but decide to go “quick

and dirty” because they think they cannot afford the time required to write clean code.

The last quadrant, prudent-inadvertent, refers to the willingness of a team to improve

upon whatever has been done, after gaining experience and relevant knowledge.

Figure 5: Technical Debt grid quadrant [20].

2.1.2. TD Types

As illustrated in figure 3, there are several different types of TD, and different researchers

provide different categorizations for TD types. The TD types presented in the figure are

provided by Tom et al. [7]. Similar to such a classification, Li et al. [15] provide an

extension of, in total, ten coarse-grained types of TD, including several sub-types:

Requirements TD, Architectural TD, Design TD, Code TD, Test TD, Build TD,

Documentation TD, Infrastructure TD, Versioning TD, and Defect TD. Moreover,

www.manaraa.com

8

Tamburri et al. [21] map social debt into technical debt, where they link this debt to

unforeseen project costs connected to a “suboptimal” development community.

As illustrated in figure 3, TD causes several different negative effects on the software.

For instance, in a study by Tom et al. [7], the authors suggest that morale, alongside

quality, productivity, are areas that are negatively influenced by the occurrence of TD.

Further, as presented in figure 3, different TD types have an impact on different TD

variables (e.g., the age of the software or different roles affected by the TD) and

Architectural TD (ATD) are highlighted in the figure since this TD type has a specific

focus of Papers A and D of this thesis, are commonly described as design decisions that,

intentionally or unintentionally, compromise system-wide quality attributes, particularly

maintainability and evolvability [22]. More specifically, ATD counts as violations of the

code towards the intended architecture for supporting the business goals of the

organization [23]. Alves et al. [14] define ATD as referring “to the problems encountered

in project architecture, for example, violation of modularity, which can affect

architectural requirements (performance, robustness, among others). Normally this type

of debt cannot be paid with simple interventions in the code, implying in more extensive

development activities.” Similarly, Fernández-Sánchez et al. [24] describe ATD as being

caused by shortcuts and shortcomings in design and architecture or by the result of sub-

optimal upfront architecture design solutions, that then become sub-optimal as

technologies and patterns become superseded.

However, ATD is fraught with several challenges arising from difficulties in detection

[25] and the fact that ATD seldom yields observable behaviors to end-users [26], and,

even if there are some software tools available for analyzing TD, most of them focus on

the code level instead of the architectural aspects of TD [27]. The issue of removing ATD

after it has been introduced is often associated with high costs since architectural

decisions take many years to evolve and are commonly made early in the software

lifecycle, and is often invisible until late in the process [28]. Furthermore, ATD tends to

become widespread within the system due to what is known as vicious circles, inferring

a non-linear accumulation of the interest with the result of making a later removal even

more costly [23]. From a non-technical perspective, ATD is also associated with several

challenges, since both managers and other professionals’ awareness of the magnitude of

the related consequences of ATD are somewhat limited. This lack of knowledge often

leads to the issue that ATD seldom receives sufficient attention from managers and that

the allocation of both time and resources to manage and remediate ATD is limited.

2.1.3. Technical Concepts of Debt, Principal, and Interest

The term TD is a financial metaphor, and the most common financial terms that are used

in TD research are debt, principal, and interest [29]. These terms are illustrated in Figure

3 together with an arrow that shows that these terms act as input for TD managing

strategies in the second dimension.

In financial terms, debt refers to the amount of money owed by one party (debtor or

borrower) to another party (creditor or lender) [30], where the obligation of the debtor is

to repay a larger sum of money to the creditor at the end of a specified period [31]. The

www.manaraa.com

9

term debt is used to describe the gap between the existing state of software and some

hypothesized “ideal” state in which the system is optimally successful [32].

From an architectural perspective (ATD), this debt refers, for instance, to system

shortcomings that can be improved to form an enhanced architectural software quality

and to avoid excessive interest payments in the form of decreasing maintainability.

The interest refers to the negative effects of the extra effort that have to be paid due to the

accumulated amount of debt in the system, such as executing manual processes that could

potentially be automated, excessive effort spent on modifying unnecessarily complex

code, performance problems due to lower resource usage by inefficient code, and similar

costs [7], [25]. Ampatzoglou et al. [30] define interest in their TD financial glossary list

as: “The additional effort that is needed to be spent on maintaining the software, because

of its decayed design-time quality.”

Financially, the term principal refers to the original amount of money borrowed, and,

from a software development perspective, the same term is used to describe the cost of

remediating planned software system violations concerning TD; in other words, the cost

of refactoring [30]. The principal is computed as a combination of the number of

violations, the hours to refactor each violation, and the cost of labor [33].

2.2. The impact of Technical Debt in the software development

industry

As illustrated in Figure 2, the second dimension of the background model addresses TD

from a software development perspective in terms of TD effects, TD variables and

strategies impacting TD.

Figure 6: Second dimension: The harmfulness of TD and management strategies

Figure 6 presents a detailed view of the covered aspects of the second dimension, “The

harmfulness of TD and management strategies” of the model presented in figure 2. The

www.manaraa.com

10

dotted lines between the different aspects of this dimension illustrate relationships that

are studied in this thesis and further describes in the following sections.

2.2.1. Software Quality Attributes

As illustrated in Figure 6, software suffering from TD negatively affects several different

quality attributes, and these affected quality attributes can, consequently, affect the

software in different ways. As illustrated by the red dotted line in Figure 6, the level of

impact can also vary during the software lifecycle [34],[35], and also cause software

developing productivity loss (illustrated by the blue dotted line in Figure 6).

As depicted in Table 1, the software product quality model proposed in ISO/IEC 25010

[36] categorizes product quality properties into eight main characteristics, and each

character is composed of a set of related sub-characteristics. This quality model is used

in this Ph.D. thesis when accessing how TD negatively affects the overall quality. Li et

al.’s [15] systematic mapping study shows that most examined studies argue that TD

negatively affects maintainability and that other quality attributes are only mentioned in

a handful of studies.

TABLE 1 - SOFTWARE QUALITY ATTRIBUTES - ISO/IEC 25010

Functional suitability

Completeness/Correctness/Appropriateness

Reliability

Maturity/Availability/Fault

Tolerance/Recoverability

Performance efficiency

Time behavior/Resource Utilization/Capacity

Security

Confidentiality/Integrity/ Non-

repudiation/Accountability/

Authenticity

Usability

Appropriateness/Recognizability/

Learnability/Operability/User Error

Protection/User Interface

Aesthetics/Accessibility

Maintainability

Modularity/Reusability/

Analyzability/Modifiability/

Testability

Compatibility

Co-existence/Interoperability

Portability

Adaptability/Installability/

Replaceability

2.2.2. Software Age

By definition, software systems are highly evolved products, and there is a commonly

held belief that the negative effects of a complex architectural design, in terms of ATD,

increase with the age of the software, which is related to the concept of software aging

www.manaraa.com

11

[37]. Parnas [37] argues that software aging is inevitable, yet can be controlled or even

reversed. Parnas highlights the causes of software aging, such as obsolescence,

incompetent maintenance engineering work, and the effects of residual bugs in long-

running systems [38]. “Programs, like people, get old. We cannot prevent aging, but we

can understand its causes, take steps to limit its effects, temporarily reverse some of the

damage it has caused, and prepare for the day when the software is no longer viable.”

Furthermore, Mens et al. [39] describe that the negative effects of software aging have a

significant economic and social impact on all sectors of industry, and it is therefore crucial

to develop tools and techniques to reverse or avoid the intrinsic problems of software

aging. This notion is echoed by Lindgren et al. [40], who state that “Technical debt refers

to software aging costs that are not attended to, which hence need to be repaid at a later

time.”

As illustrated with red dotted lines in Figure 6, this thesis includes studies that explore

the relationships between the age of the software with both productivity and quality

attributes.

2.2.3. Software Professional Roles

Today, there are several different kinds of professional roles present in the software

industry, such as e.g., developers, testers, architects, and product managers. These roles

have different working tasks and responsibilities and work in different areas and different

development phases. The different roles can also have a different background, education,

understanding, and scope of knowledge. As illustrated by the black dotted line in Figure

6, several different professional roles participate during the software lifecycle, and their

productivity could subsequently be affected by TD. The studies within this Ph.D. thesis

involve several different software professional roles that are affected by TD, as well as

the roles that are empowered to make decisions in the context of TD.

2.2.4. Tracking Process

Software tooling is a necessary component of any TD management strategy [16], and the

tracking process of TD is crucial for the ability to manage TD proactively.

Even if there are some tools available (e.g., SonarQube), these tools usually only focus

on identifying TD at a code level, and these code-focusing tools generally cannot prove

indicative for, for example, architectural trade-off, since they can produce misleading

results [41]. The available tools also rarely provide the user with any supporting

information about the principal or the interest of the TD. Despite the significant need for

supporting tools and methods for analyzing TD and ATD, no supporting software tools

that iteratively include the measuring, evaluation, and tracking of all the different types

of TD exist today. The process of starting to track TD requirements includes both costs

in terms of initial investments, and educational and preparation activities.

Further, the information collected during the tracking process such as e.g. the debt, the

interest, and the principal cost facilitates the TD prioritization process. This relationship

is illustrated in Figure 6, by the yellow dotted line.

www.manaraa.com

12

2.2.5. Software Development Productivity

Several publications, such as [42], [7], [15], state that TD can, in general, have a negative

effect on overall software development productivity, yet these publications rarely define

what productivity refers to and in what way this reduced productivity can be measured.

There is no commonly agreed definition upon the term productivity [43], though in

software engineering productivity is commonly defined from a financial perspective, as

the effectiveness of productive effort measured as the rate of output per unit of input [43],

[44], [45],[30]. Productivity is also a measure of the quality of an output relative to the

input required to produce the output. This means that productivity is a combined

measurement of efficiency and quality. Software systems suffering from TD cause an

extensive amount of wasted working time since practitioners are forced to perform

additional activities, which would not be necessary if the TD was not present.

In general, there are different ways of measuring software development productivity [46],

though in this Ph.D. thesis, we refer to productivity as “the ability to deliver high-quality

customer value in the shortest amount of time.” This means that the less time that is

wasted due to experiencing TD, the greater the increase in productivity, inferring that

practitioners can thus use more time focusing on delivering customer value.

The amount of waste of working time due to experiencing TD may vary depending on

e.g., different roles and different age of the software. These relationships are presented in

Figure 6, where the black dotted line illustrates that this thesis includes studies that

explore how different professional roles experience an impact on their productivity due

to TD. Similarly, the red dotted lines illustrate that this thesis includes studies that explore

how the age of the software affects productivity loss. Further, different compromised

software quality attributes may also impact software development productivity, and this

relationship is illustrated by the blue dotted line in Figure 6.

2.2.6. Developers’ morale

In addition to technical and financial consequences, TD can also affect developers’

morale [7], [13]. This association is illustrated in Figure 6 by the green dotted line, which

demonstrates that the research presented in this thesis includes studies that explore the

relationship between productivity loss due to TD and developer’s morale.

The reason for this relationship is primarily because the occurrence of TD could hamper

the developers from performing their tasks and achieving their developer goals. The term

morale can be found within the research field of organizational sciences, management,

education, and healthcare [47]. Despite the vast body of related literature, the term morale

lacks a coherent and precise definition, and Hardy [47] describes how several concepts,

such as satisfaction, motivation, and happiness, are commonly used interchangeably to

highlight the term morale. In this thesis, we have used the following definition of morale,

provided by Hardy [47]: “a cognitive, emotional, and motivational stance toward the

goals and tasks of a group. It subsumes confidence, optimism, enthusiasm, and loyalty as

well as a sense of common purpose”. Furthermore, we adopt an approach for exploring

the levels of morale from a set of factors that influence morale, suggested by Hardy [47],

www.manaraa.com

13

where the antecedent factors of morale are divided into three main categories: affective

antecedents, future/goal antecedents, and interpersonal antecedents.

2.2.7. Prioritization of Technical Debt

The decision-making regarding if and when a TD item should be refactored is part of the

TD prioritization process. Several papers propose different prioritization approaches to

assist in this process [48], [49], [50], [51], [42], [52].

When TD items are identified, they are commonly registered in some sort of backlog. The

used backlogs could, e.g., be a dedicated backlog for only TD items or in a feature backlog

where TD items are mixed with features (dependent on different adopted development

process). When making decisions on TD prioritizations, cost and value estimations of

refactoring initiatives are essential, since these estimations assist in planning the work

processes and also prevent potential cost and schedule overruns. As illustrated by the

yellow dotted line in Figure 6, this information is commonly derived from a TD tracking

process.

However, several authors highlight the difficulties of obtaining such reliable estimates

[53], [54], [55], and numerous researchers such as e.g., [56] and [52], state that decisions

related to TD are largely based on a manager’s gut feeling, rather than hard data gathered

through appropriate measurement.

2.2.8. Prevention and Remediation initiatives

There are different prevention and remediation initiatives that can be undertaken to reduce

the harmfulness of TD. Such initiatives could e.g., be based on mechanisms where

managers impact practitioners’ work by adopting different types of incentive programs,

and thereby influence software engineers’ work outcome, their attitudes, and their work

behaviors [57].

As illustrated by the green dotted lines in Figure 6, these prevention and remediation

initiatives could have an impact on how practitioners prioritize and track TD and also on

the developer morale and the developer productivity.

2.3. Technical Debt in context-specific domains

As illustrated in Figure 2, the third dimension of the background model focuses on TD in

two different context-specific domains: the startup company domain and the safety-

critical domain.

www.manaraa.com

14

Figure 7: Third dimension: TD in context-specific domains

Figure 7 presents a detailed view of the covered aspects of the third dimension “TD in

context-specific domains” of the model presented in figure 2. This figure illustrates that

this thesis includes research addressing the impact of Safety-Critical Software aspects on

both TD effects and TD managing strategies. The figure also illustrates that the thesis

explores how Startups strategically manage TD and its relationship to TD variables.

2.3.1. Safety-Critical Software

Different types of software systems operating in different domains have different types

of guidelines and regulatory requirements to which the software must adhere before it can

be placed on the market. Software systems operating in the safety-critical software (SCS)

domain are, for instance, heavily regulated and require certification against industry

standards.

As illustrated in Figure 7, these SCS standards have an impact on different TD effects

and TD management strategies, and for instance Ghanbari [58] states that these standards

can have a significant impact on the process of conducting refactoring tasks. Further, the

architecture may also have a high impact on the characteristics of the system under its

development [59]. However, these safety-critical regulations may also strengthen the

implementation of both source code and architecture, and thereby initially limit the

introduction of TD.

2.3.2. Startups and Technical Debt

Giardino et al. [6] define software startups as those “organizations focused on the creation

of high-tech and innovative products, with little or no operating history, aiming to

aggressively grow their business in highly scalable markets.” Software startups are newly

created companies, typically with no operating history, and are mainly oriented towards

developing high-tech and innovative products, aiming to grow their business in highly

www.manaraa.com

15

scalable markets [60], [6]. Compared to more mature companies who often maintain the

software in an established market, software startups face different types of challenges.

As illustrated in Figure 7, the software development approach in Startup contexts has an

impact on TD management strategies. This impact can be described in terms of that

Startups often operate with limited resources and under extreme time pressure as they

strive to produce their product and avoid being beaten to market by a competitor or

running out of capital [3]. This pressure is likely to cause startups to accumulate TD as

they make decisions that are focused more on the short-term than the long-term health of

the codebase, which requires later attention and need to be managed carefully. Further,

the context which startups operate within can also have an impact on different TD

variables such different roles and different phases during the startup lifecycle.

www.manaraa.com

16

www.manaraa.com

17

3. Research Motivation

As highlighted in the previous Introduction chapter, software systems and software

development processes suffering from TD can be impeded in terms of the technical,

financial, and developer working situational perspectives. However, since limited

knowledge and few supporting tools are available to measure the extent of TD within a

system, it is quite difficult to compute the negative effects that TD causes in terms of, for

example, extra costs, extra activities, and the need for extra resources. Without this

knowledge, software development organizations are not aware of the interest that they are

paying on the debt, and therefore they might not currently give TD management the

necessary attention within their organizations. Furthermore, without this information,

software organizations risk not focusing sufficiently on prevention mechanisms and

deliberate remediation of their TD, which, over time, can result in high defect rates,

project delays, quality complications, and very low developer productivity.

Although significant theoretical work has been undertaken to describe the negative effects

of TD, to date very few empirical studies focus on these effects’ impact and consequences

for software development. Therefore, there is a need for more empirical assessments in

the research field, with a focus on quantifying the negative effects and on providing a

more in-depth understanding of its related negative consequences.

The overarching goal of this Ph.D. thesis is threefold. The first goal is to empirically study

and understand in what way and to what extent TD influences today’s software

development work, specifically with the intention of providing more quantitative insights

into the field. Second, the goal is to understand which different initiatives can reduce the

negative effects of TD and also which factors are important to consider when

implementing such initiatives in the industry. The third goal is to study TD in different

context-specific domains in order to understand if companies developing different types

of software manage and perceive TD differently.

More specifically, for the first goal, we explore the negative effects of TD from four

different perspectives.

Additionally, for the second goal, and based on the findings from the first, we synthesize

different initiatives that can be undertaken in order to reduce the negative effects of TD.

The third goal is addressed by studying TD in two different domains, a software startup

company domain, and a safety-critical software domain. In order to address this goal, this

thesis studies two different context-specific domains; the software startup domain and the

safety-critical software domain. The rationale for selecting these specific domains is

related to the commonly widely different ways in which these types of companies work

with software development. Where, for instance, developing software for safety-critical

applications are commonly heavily regulated and require certification against industry

standards. Meanwhile, the software development process in startup companies quite often

is less strict compared to more mature software development companies and has, in

general, focus on the speed of the development in order to get the software out on the

market as quickly as possible.

www.manaraa.com

18

The different studied perspectives, initiatives, and domains are presented in Figure 8.

Figure 8: The overarching research goal in this thesis.

www.manaraa.com

19

4. Research Questions

Based on the research motivation presented in Chapter 3, three main research questions

are derived, together with a total of nine sub-questions. These research questions are the

primary drivers of the research studies presented in this Ph.D. thesis. The research

questions (RQ) are presented in Table II.

TABLE II - RESEARCH QUESTIONS

Main
Research

Question

(RQ)

Sub-

question
Research Question

1 What are the consequences of TD in today's software industry?

 1.1 What is the negative impact of architectural TD?

1.2 What is the negative impact on software quality due to TD?

1.3 What is the negative impact on development productivity

due to TD?

1.4 What is the negative impact on developers’ morale due to

TD?

2 What initiatives reduce the negative effects of TD in today's

software industry?

 2.1 What impact do TD prevention initiatives have on software

development?

2.2 What impact do TD remediation initiatives have on

software development?

 2.3 What impact do TD tracking initiatives have on software

development?

3 What factors affect TD management in context-specific domains?

 3.1 What are the challenges and benefits of deliberately

introducing TD for software startups?

 3.2 What impact can regulatory requirements have on TD

management in a safety-critical software context?

www.manaraa.com

20

5. Relationship between Studies and Research

Questions

This Ph.D. thesis presents eleven research studies (Papers A–K), where each individual

research study fully or partly addresses the research question described in Chapter 4.

Figure 9 provides an overview of the relationships between the studies and the research

questions. The figure also illustrates in which chapter the papers are presented in.

The findings for each research question are described in Chapter 20.

Figure 9: Research studies and findings presented in the thesis.

5.1. Research studies addressing RQ1

As presented in Figure 8, the first main research question (RQ1) sets out to understand

the consequences of TD in today's software industry, as seen from different perspectives.

This research question was addressed in six studies:

• Managing architectural technical debt: A unified model and systematic literature

review

• Time to Pay Up – Technical Debt from a Software Quality Perspective

• The Pricey Bill of Technical Debt – When and by Whom Will it be Paid

• Impact of Architectural Technical Debt on Daily Software Development Work – A

Survey of Software Practitioners

• Software developer productivity loss due to technical debt – A replication and

extension study examining developers’ development work

• The Influence of Technical Debt on Software Developer Morale

www.manaraa.com

21

5.2. Research studies addressing RQ2

As presented in Figure 8, the second research question (RQ2) explores which different

initiatives reduce the negative effects of TD in today's software industry. This research

question was addressed in seven studies:

• The Pricey Bill of Technical Debt – When and by Whom Will it be Paid?

• Software developer productivity loss due to technical debt – A replication and

extension study examining developers’ development work

• The Influence of Technical Debt on Software Developer Morale

• Technical Debt Tracking: Current State of Practice – A Survey and Multiple Case-

Study in 15 Large Organizations

• How Regulations of Safety-Critical Software Affect Technical Debt

• Technical debt triage in backlog management

• Carrot and stick approaches when managing Technical Debt

5.3. Research studies addressing RQ3

As presented in Figure 8, the third research question (RQ3) examines different factors

that affect TD management in context-specific domains. This research question was

addressed in two studies:

• Embracing Technical Debt, from a Startup Company Perspective

• How Regulations of Safety-Critical Software Affect Technical Debt

www.manaraa.com

22

www.manaraa.com

23

6. Methodology

Software engineering is a multi-disciplinary field, encompassing not only technological

but also social boundaries. Therefore, not only do the tools and processes software

engineers use need to be investigated, but also the social and cognitive processes

surrounding them, which includes the study of concerned professionals, their working

tasks, and activities. Thus, we need to understand how individual software engineers

develop software, as well as how teams and organizations coordinate their efforts [61].

This thesis includes eleven publications, and, in order to fulfill the goals of this Ph.D.

thesis, different research methods and different research approaches have been adopted.

Table III provides an overview of the goals together with the selected research types, the

research approaches, and, finally, the research methods used for each of the included

publications. It is apparent from this table that this Ph.D. thesis has a strong emphasis on

empirical research, where most of the analyzed data are based on estimated and/or

reported artifacts and derive knowledge from actual industrial settings and experiences,

rather than from theories or anecdotal evidence. It can also be seen in Table III that a

strong focus is placed on combining both a qualitative and quantitative research

methodology using a mixed-methods approach.

TABLE III - OVERVIEW OF THE INCLUDED PUBLICATIONS

Paper Goal/Focus area Research

Type
Research

Approach
Research Method

A ATD Composition* Systematic

Literature

Review

Qualitative

(and

Quantitative)

Systematic Literature

Review (SLR)

B Affected Quality Attributes

due to TD
Empirical

Approach
Mixed

Methods
Interviews (n =

43+32) and Survey (n

= 258)

C Quantification of the

Estimated Interest of TD
Empirical

Approach
Mixed

Methods
Interviews (n = 32)

and Survey (n = 258)

D Software Practitioners’

Perception of the Impact of

ATD*

Empirical

Approach
Quantitative Survey (n = 258)

E Software Developer

Productivity Loss due to TD

Including a Replication

Study of Reported Data

Empirical

Approach
Mixed

Methods

(longitudinal +

replication

study)

Interviews (n = 16)

and Survey (n = 43;

473 datapoints) +

Survey (n = 47; 177

datapoints)

www.manaraa.com

24

F The Influence of TD on

Software Developer Morale
Empirical

Approach
Mixed

Methods
Interviews (n = 15)

Survey (n = 33)

Survey (n = 473)

G Introduction of Tracking TD Empirical

Approach
Mixed

Methods
Interviews (n = 13)

and Survey (n = 226)

Document analysis

H TD from a Startup

Perspective
Empirical

Approach
Quantitative Interviews (n = 16)

I Safety-Critical Software and

TD
Empirical

Approach
Quantitative Interviews (n = 19)

J TD Prioritization in

Backlogs
Empirical

Approach
Mixed

Methods
Interviews (n = 17)

and Survey (n = 17)

K TD Management Strategies Empirical

Approach
Mixed

Methods
Interviews (n = 32)

and Survey (n = 258)

*This study has a specific focus on ATD

6.1. Research Approaches

The included studies that form this thesis use different research approaches. The

approaches adopted are listed in this section, together with a short description as well as

the benefits of each approach.

6.1.1. Qualitative research

The goal of conducting qualitative research is the “Development of concepts which help

us to understand social phenomena in natural (rather than experimental) settings, given

due emphasis to the meanings, experiences, and views of the participants” [62]. The

motivation for using this qualitative research approach was to obtain richer information,

to gain more in-depth insights into the studied phenomenon, and to understand the

perceptions that underlie and influence different studied negative effects. In this thesis,

we have chosen individual interviews, group interviews, and documents as the data

collection approaches when conducting qualitative research.

6.1.2. Quantitative research

The goal of conducting quantitative research is to “explain behavior in terms of specific

causes (independent variables) and the measurement of the effects of those causes

(dependent variables)” [63]. The benefits of a quantitative research approach include

improving the generalizations of a larger number of subjects and to thereby achieve higher

objectivity. The quantitative data collection method used in this thesis is based on surveys.

www.manaraa.com

25

6.1.3. Mixed-Methods research

A mixed-methods research approach involves the collection of both qualitative and

quantitative data, where the two forms of data collection are integrated into the design

through merging the data, connecting the data, or embedding the data. The purpose of this

approach is to provide a complete understanding of the phenomena being studied [64]. It

can be argued that the benefits of a mixed-method approach includes the provision of a

stronger understanding of the problem than either method on its own, and by minimizing

the limitations of both approaches [65]. An advantageous characteristic of conducting

mixed methods research is the ability to perform triangulation. However, there is a

potential weakness of mixing methods for the purpose of validity convergence, namely

to compare outcomes from different methods to see if they agree, as the interpretation of

agreement or disagreement is not straightforward [64].

The mixed-methods research approach used in this thesis has contributed to a comparison

of different perspectives drawn from both qualitative and quantitative data within the

same studies. This approach has also assisted in explaining quantitative results with

qualitative follow-up data collections. Even if it is claimed that it is more difficult to

execute studies based on a mixed-methods approach [66], the motivation for using this

approach was to be able to address more complex research questions and to collect a

richer and stronger array of evidence than could be accomplished by using a single

method alone [66].

When interpreting the results from a mixed-methods research approach, there are

different designs to facilitate the provision of a stronger interpretation and obtain more

insight from the results. This thesis has used different typologies for the classification of

different mixed-methods strategies. The convergent parallel mixed-methods design was

used in Paper C, where we collected both qualitative and quantitative data, analyzed them

separately, and compared the results to understand whether the findings confirmed or

contradicted each other. In Papers E, F, G, and K, an explanatory sequential mixed-

methods design was used, where, as a first step, we collected and analyzed the quantitative

data and used this result on which to build the qualitative data collection. In Papers B, I

and J, we first collected and analyzed the qualitative data and, after that, collected the

quantitative data, using a so-called explanatory sequential mixed method design.

6.1.4. Longitudinal studies

A longitudinal study is a research method that contains repetitive observations of the same

variables (e.g., time usage) on more than one occasion and over time [67]. The incentive

for using a longitudinal research method in this study (Paper E) has two principal aspects:

a) To increase the precision of reporting experienced data (in our case, not based on single

estimations and single perceptions). This was achieved by studying each respondent for

several weeks, where the reported data could be compared. Such designs are called

repeated-measures designs [67]; and b) To examine the respondents’ changing responses

over time. Longitudinal designs have a natural appeal for the study of changes associated

with development or changes over time. They have value for describing both temporal

changes and their dependence on individual characteristics [67]. Ployhart and

www.manaraa.com

26

Vandenberg [67] state that “Longitudinal designs give greater precision per observation,

but observations may be more expensive or difficult to collect. Problems with missing or

suspect data may be harder to solve in longitudinal studies. Implementation issues also

influence design, since it is not always possible to sustain the commitment of investigators

and participants or the quality of study procedures”.

To address the potential problem with missing data from the respondents, for instance, if

the respondents for some reason did not enter the data in one or more surveys, they were

always asked to report their experienced data since the last time they took the survey.

This wording means that if for some reason, the respondent did not enter the data in one

or more surveys, they would enter the data from the last time the respondent took the

survey. In this way, the surveys cover the full period of sampling.

6.1.5. Replication studies

Replication plays a key role in empirical software engineering [68] and is proposed as an

important means of increasing confidence in and assessing the reliability of results [69],

[70]. A common goal of conducting a replication of a study is to assist a research

community in gaining information about conditions under which the original set of results

hold [71], [72].

Paper E includes an additional replication study with the goal of investigating whether

the original results demonstrate that the findings can be generated repeatedly, and that the

original findings were thus not an exceptional case. This replication study was

characterized as an “Internal Exact Independent Partly” study. Internal reflects that the

replication team was the same as in the previous phases. The categorization Exact reflects

that the procedures were followed as closely as possible to determine whether the same

results could be obtained. The categorization of Independence indicates that, during the

replication phase of the study, we deliberately varied some aspects of the conditions when

collecting the data [68]. Finally, the categorization Partly points out that not all of the

research areas and research questions were replicated.

6.1.6. Data Collection

The collected data in this Ph.D. thesis consist of both primary and secondary studies,

where the primary form of data collection is original research, and where the secondary

study sets out to aggregate and synthesize the outcomes of other primary studies in an

objective and unbiased manner using either a qualitative or quantitative form of synthesis.

The secondary study in this thesis refers to the systematic literature review presented in

Paper A. The adopted quantitative methods involve surveys, and the qualitative methods

contain interviews and, to some extent, as well as the analysis of documents and reports

from various tools, which are presented in Papers B–K (see Table III).

6.1.7. Interviews

The data collection method in this thesis includes several interviews with industrial

practitioners within the software engineering field, where we, as researchers, asked a

www.manaraa.com

27

series of questions to a set of subjects regarding the areas of interest in the study. This

thesis includes both interviews with a single interviewee well as several group interviews

(focus groups), with several interview subjects simultaneously. According to the guidance

provided by Runeson and Höst [73], during all interviews, the dialog between the

researcher and the subject(s) was conducted by a set of pre-defined interview questions.

Runeson and Höst [73] distinguish between unstructured, semi-structured, and fully

structured interviews. Unstructured interviews are a very flexible approach whereby the

area of interest is established by the interviewer, but the discussion of the issues is guided

by the interviewees [74]. In fully structured interviews, the interviewer has full control of

the order of the questions, which are all predetermined [74]. A fully structured interview

is similar to a face-to-face completion of a survey [73]. The interviews conducted in this

Ph.D. thesis are all semi-structured in nature, with the advantage of allowing for

improvisation and the exploration of the studied objects [73].

Semi-structured interviews include a combination of open-ended and closed questions,

designed to elicit not only the anticipated information, but also other information not

foreseen by the interviewer. In semi-structured interviews, questions are planned but are

not necessarily asked in the same order as they are listed in the interview protocol [73].

We used semi-structured interviews with the intention of ensuring that they provide us

with valuable results, since the interviewees’ awareness and knowledge about the concept

of TD could potentially differ considerably, and therefore it was important to carefully

explain the concepts used in order to create a comparable understanding between the

interviewer and the interviewees.

For accuracy, all interviews were digitally recorded and transcribed verbatim (all

interviewees were asked for recording permission before starting). All interviews were

treated anonymously, regarding both the name of the interviewee and the company name.

All interviews were based on a selective sampling of the interviewees, with respect to

their role and their expertise. Several of the publications included in this thesis include

interviews with individuals in software roles, such as software architects, developers,

testers, project managers, and product managers.

Some of the conducted interviews were characterized as “Follow-Up” interviews,

meaning that, to some extent, they focused on corroborating certain findings that we

already thought had been established during previous data collection activities, where the

questions were carefully worded (avoiding leading questions) to allow the interviewee to

provide fresh commentary on, for example, previously presented material [66].

The study in Paper E also includes a pre-study. During this initial pre-study, the

motivation for the study was presented and discussed with software practitioners from

seven software companies within our network, including an extensive range of software

development. This phase acted as a guide for collecting information concerning the

studied context and for selecting the most appropriate research model.

The interviews in Papers C, G, E, F, and K were conducted with interviewees who had

previously answered one or more surveys, and during these interviews, the compiled

results from the interviewees’ individual results from the survey were presented. During

interviews with their managers as well as during group interviews, an aggregated view of

www.manaraa.com

28

all the respondents from the respective company was presented. This presentation allowed

the interviewees to relate to the interview questions more easily, where the results of the

survey were addressed. The interview questions for these studies were designed to a)

increase the understanding of the survey results, b) ensure that the questions in the survey

were understood and interpreted as intended and also uniformly, c) confirm the results

from the survey, and d) understand the implications of the survey results.

6.1.8. Surveys

Initially, we would like to clarify the term “survey” in this Ph.D. thesis. A survey, in this

context, refers to the questionnaire (to differentiate it from a “survey” as a literature

review). Surveys are considered one of the most common data collection methods in

software engineering research. Surveys aim to achieve generalizability over a certain

population, for instance, different software developing practitioners or end-users [75].

Their advantages can be described in terms of facilitating the recruitment of respondents,

who can be anonymous, since anonymity is believed to help gain access to respondents

who would normally be hard to reach, and it may facilitate the sharing of their experiences

and opinions. Online surveys are considered useful when the issues being researched are

particularly sensitive [76].

The motivation for using surveys in this thesis was to reach a high level of generalizability

regarding a large number of software professionals, and to maximize coverage and

participation without having to conduct time-consuming interviews. We also aimed to

collect data for quantitative analysis that could contribute to a more detailed examination

of the different relationships and aspects of the studied topics. Aside from Papers A, H,

and I, all papers included in this thesis incorporated a research method that, to some

extent, included a survey. According to the guidance provided by [77], the drafts of all

surveys were first tested by at least one industrial practitioner and by one Ph.D. candidate

in order to evaluate the understanding of the questions and the usage of common terms

and expressions. During this evaluation, we also monitored the time needed to complete

each survey. All surveys were designed and hosted by the online survey service

SurveyMonkey.

Except for the surveys used in the longitudinal study in Paper E, all the surveys used a

mix of open-ended and closed questions where the respondents could either select an

answer from among pre-defined alternatives or formulate their answers freely in a text

field. The questions were a combination of optional and mandatory. To avoid bias in these

surveys, the questions were developed as neutrally as possible, ordered in such a way that

one question did not influence the response to the next question, and a clarifying

description was provided when needed [78].

6.1.9. Systematic Literature Reviews

A vital part of conducting software engineering research is the ability to identify existing

research on technologies, tools, theories, and methods in order to evaluate and make

informed and scientific decisions. Empirical approaches that include systematic review

methodologies such as a systematic literature review (SLR) are effective in this context

www.manaraa.com

29

[79]. The main rationale for undertaking an SLR is to synthesize existing work and to

identify gaps in current research in order to suggest areas for further research [80].

The SLR process should be carried out in accordance with a predefined search strategy,

which allows the search to be assessed. The major advantage of using this method is that

the result is provided by evidence which is robust and transferable, and that sources of

variation can be further studied [80]. It provides a framework for establishing the

importance of the study as well as a benchmark for comparing the results with other

findings [65].

www.manaraa.com

30

www.manaraa.com

31

7. Data analysis

The data analysis in this thesis has been carried out in different ways, depending on the

type of data that was collected. Quantitative data are analyzed using statistics, while the

qualitative data are analyzed using categorizations and sortings [73].

7.1. Quantitative Data Analysis

Techniques for analyzing and summarizing quantitative data include different methods,

such as determining measures of central tendency (e.g., median and mean) and measures

of dispersion (e.g., ranges and standard deviations) [81].

For example, the collected data from the surveys used in this thesis were analyzed in a

quantitative fashion, i.e., by interpreting the values obtained from the answers. All

analyses were carried out using the software package SPSS (version 22), R (version 3.3.2)

[30], and by using the optional collection of R packages from tidyverse (version 1.1.1)

[32] for data manipulation and visualization. The data collected in the surveys were, e.g.,

analyzed by assessing the median, mean and standard deviation and also by using

statistical methods such as Pearson’s R correlation coefficient, the Pearson chi-square

tests, F-tests, Holm’s procedure, the Wilcoxon signed-rank test, and ANOVA.

Pearson's R method was used for correlation analysis of associations between variables.

This method computes pairwise, determining the strength and direction of the association

between two values, and can be used to describe a linear relationship between two values.

Pearson chi-square tests were used for evaluating the likelihood of any observed

difference between the values arising by chance, and for assessing whether unpaired

observations of two variables were independent of each other. F-tests using

Satterthwaite’s approximation of the denominator degrees of freedom were used for

significance tests of regression coefficients [82]. Holm’s statistical procedure [83] was

used to counteract the problem of multiple comparisons of different groups of data. The

Wilcoxon signed-rank test is a non-parametric statistical hypothesis test and was used

when comparing two related samples when the population could not be assumed to be

normally distributed. The one-way ANOVA test was used to compare the means of two

or more independent groups in order to determine whether there was statistical evidence

that the associated means were significantly different.

7.2. Qualitative Data Analysis

When analyzing the qualitative data collected in this thesis, a thematic analysis approach

was used. Thematic analysis is a method for identifying, analyzing, and reporting patterns

and themes within data, which involves searching across a dataset to find repeated

patterns of meaning. The thematic analysis provides a flexible and useful research tool,

which offers a detailed and complex account of the collected data [84].

When analyzing the qualitative data, guidelines provided by Braun and Clarke [84] were

used in order to conduct the analysis in a thorough and rigorous manner. The thematic

analysis was conducted using a six-phase guide. First, the audio recorded qualitative data

https://en.wikipedia.org/wiki/Multiple_comparisons
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Normally_distributed

www.manaraa.com

32

collected from interviews were transcribed into written form, where we were also able to

familiarize ourselves with the data. The second step involved the production of initial

codes from the data, where we organized the data into meaningful groups. In this phase

of the analysis, a Qualitative Data Analysis (QDA) software package called Atlas.ti was

used. The third phase focused on searching for themes by sorting the different codes into

potential themes and collating all the relevant coded data extracts within each identified

theme. Each extract of data was assigned to at least one theme and, in many cases, to

multiple themes. For example, the citation “Maybe you have to encourage the developers

a bit, to get the data” was coded as “Willingness to input data” in the theme of “Measuring

Wasted time Aspects” in Paper E. To ensure that the coding was performed in a consistent

and reliable fashion, and in order to triangulate the interpretation of the data and to avoid

bias as much as possible, at least two authors synchronized the output of the coding in the

papers, following guidelines provided by Campbell et al. [85].

The fourth phase focused on the revised set of candidate themes, involving the refinement

of those themes. The refinement focused on forming coherent patterns within the themes.

Otherwise, we revised the themes or created a new theme. The fifth phase focused on

identifying the essence of each theme and determining what aspect of the data is captured

by each theme. This phase also stressed the importance of not just paraphrasing the

content of the data extracts, but also identifying what is interesting about them and why.

The final phase of the thematic analysis took place when we had a set of fully developed

themes, and involved the final analysis and write-up for publication.

7.3. Threats to Validity

The validity of a research study refers to the trustworthiness, credibility, conformability,

and data dependability of the results, and to what extent the results are reliable and not

biased by the researchers’ personal opinions [73], [66]. In this thesis, we have chosen a

classification scheme in order to distinguish between different aspects of validity and

threats to validity provided by Runesson and Höst [73], which is also used by Yin [66]

and Wohlin et al. [86]. This scheme distinguishes between four aspects of validity:

construct validity, internal validity, external validity, and reliability.

7.3.1. Construct validity

Construct validity addresses the extent to which operational measures that are studied

represent what the researchers are considering as well as the desire to investigate

according to the research questions [73], i.e., whether the theoretical constructs are

interpreted and measured correctly [61]. The findings presented in this Ph.D. thesis could

potentially be affected by some threats to construct validity, and in order to mitigate this

risk, several different approaches were employed, depending on the type of study.

For example, in the longitudinal study in Paper E, this risk was mitigated by trying to

ensure that all the participants had the same base of knowledge in the field of study; all

participants received educational material as a first activity when they joined the study.

However, we cannot ensure that all the participants read and understood the material.

www.manaraa.com

33

Another example is the studies that used web surveys as part of the data collection. In

these studies, the construct validity threat was addressed by helping the respondents to

distinguish between different types of TD, and a short description of each type of TD was

used in the surveys. An additional threat to this validity can stem from the fact that the

qualitative data derived from the survey (excluding Paper E), are based on perceptions

and estimations (not on measured, reported, or observed data) made by the respondents.

Moreover, in Paper A, which is a systematic literature review, we have attempted to

mitigate this risk by only including peer-reviewed publications from journals, conference

proceedings, or workshop proceedings, and only two peer-reviewed book chapters were

included in order to include all relevant publications concerning ATD. In addition, in

order to mitigate the risk of not retrieving relevant publications, which could affect the

completeness of the study, we searched the most common electronic databases and also

conducted both a forward and backward snowballing technique [87].

7.3.2. Internal validity

Internal validity refers to whether the result is correctly derived from the researcher’s

conclusions without external factors potentially affecting the result. “When the researcher

is investigating whether one factor affects an investigated factor, there is a risk that the

investigated factor is also affected by a third factor” [73]. Yin [66] states that internal

validity primarily concerns studies where the researcher is trying to explain how and why

one event led to another and thereby concludes a causal relationship without considering

the presence of additional excluded events. Furthermore, Easterbrook et al. [61] state that

it is a common mistake to confuse correlation with causality and that it is much harder to

demonstrate causality than to show that two variables are correlated.

The results of this thesis could potentially be affected by this threat since, in some of the

included studies, the findings are correlational and also indicate a causal relationship. For

example, in the studies where we examine the amount of wasted time, activities, and

different TD types, this threat affects our ability to accurately explain the phenomena that

we observed [66]. This threat is, for example, demonstrated in Paper B, where we use the

estimated wasted time correlated with the frequency of how often the respondent

encountered each of the listed quality attributes. By performing this correlation, the

validity could potentially have been violated by either finding relationships that are non-

existent or missing real relationships that are wrongly deemed non-significant. However,

by combining correlation analysis with analytical causality (from, e.g., the conducted

interviews) in Papers E, F, G, and K, causality links can be suggested. Therefore, to

mitigate this threat, we have in these papers triangulated the data by conducting follow-

up interviews validating the derived results.

7.3.3. External validity

The external aspect of validity addresses the extent to which it is possible to generalize

the findings of the study and for them to be applicable to other situations [73], where Yin

[66] describes generalization as follows: “An analytic generalization consists of a

carefully posed theoretical statement, theory, or theoretical proposition.” Easterbrook et

www.manaraa.com

34

al. [61] state that this commonly depends on the nature of the sampling used in a study.

This notion is echoed by Morse et al. [88]: “the sample must be appropriate, consisting

of participants who best represent or have knowledge of the research topic.”

Following Yin’s [64] guidelines, it is important to ensure external validity in terms of

analytic generalizability. This was taken into account when formulating the research

questions by using the terms “how” and “what,” which increases the possibility of

arriving at an analytical generalization. Moreover, in order to mitigate this risk, the goal

is to enable analytical generalization where the results are extended to situations that have

common characteristics, and thus for which the findings of the study are applicable [73].

Although we cannot generalize the results in this study to all different software

companies, we can rely on a high number of participating organizations from different

types of software development settings, e.g., different business domains, programming

languages, and experience, and also on a relatively high number of participants from each

company, with different professional roles. Furthermore, in studies where surveys are

used as part of the data collection, there is always a risk that the sample is biased, and a

potential threat, therefore, refers to the demographic distribution of response samples.

The companies in this thesis are primarily from the Scandinavian region. Without

replicating this study in other countries or regions, it is not possible to confirm the

generalizability of these results.

7.3.4. Reliability

The goal of reliability in research is to minimize the errors and biases in a study.

Reliability addresses whether the study would yield the same results if other researchers

replicated them, following the same procedure, by means of the extent to which the

analysis is dependent on specific researchers [73], [66]. An example of a threat to the

reliability could, e.g., occur if researchers introduce bias into the study where a tool being

evaluated is one in which the researchers themselves have a stake [61]. Morse et al. [88]

state that it is important to ensure the attainment of rigor and reliability verification

strategies early, and also during the whole study, in a proactive manner and not only apply

them using a post-hoc evaluation after the research is completed.

An example of a threat to the reliability can be found in the included papers where the

results are based on estimated values from participants, while we do not know what the

given estimations are based on. However, as the demographic data show in these studies,

many participants have several years of software development experience. This means

that they are used to estimate the amount of work that has been undertaken or is upcoming,

which mitigates the threat that the estimated effort would be very distant from the “actual”

one.

During the design of the studies included in this Ph.D. thesis, we attempted to mitigate

this threat in various ways. First, one prerequisite to allowing for repeatability is, for

example, access to the used surveys, which we have addressed by making all surveys

available online. To assist in replicability, we have also reported how the data analysis

protocol was constructed for interviews and the SLR. Second, the code and sub-codes of

the collected data from interviews are reported. Third, as suggested by [65], the findings

www.manaraa.com

35

in several papers are presented using a rich and thick description box that “may transport

the reader to the setting and give the discussion an element of shared experiences.”

Fourth, the studies included in this Ph.D. thesis also present negative or discrepant

information that runs counter to the studied themes. When presenting contradicting

evidence, the account becomes more realistic and more valid, according to [65]. Fifth, in

several of the included studies in this Ph.D. thesis, the methodology section initially

presents the used research design where each step or phase of the study is both visually

and textually described in detail. This information may contribute to the replication of the

studies. Sixth, since replication plays a key role in empirical software engineering [68]

and is proposed as an important means of increasing confidence in and assessing the

reliability of results [69], [70], the findings in Paper E involve a replicational phase.

Seventh, we have employed source triangulation, methodological triangulation, and,

finally, observer triangulation. The triangulation is presented as a separate section (section

7.5.3, below) in this Ph.D. thesis.

7.3.5. Triangulation

To achieve a higher degree of validity and reliability, we have adopted different

triangulation techniques. Triangulation is important in order to increase the precision of

empirical research, in terms of adopting different perspectives towards the studied object

and thus providing a broader view [73]. In this thesis, three different types of triangulation

techniques are mainly used: source triangulation, observer triangulation, and

methodological triangulation.

Source (data) triangulation refers to using several sampling strategies to ensure that data

is gathered at different times and in different situations. The use of more than one source

(e.g., interviews, surveys, documents) of data strengthens the conclusion since it can be

drawn from several sources of information [73], [89]. During source triangulation, the

sources of evidence can be of either a convergent or non-convergent character, where the

converging lines of inquiry refer to when more than one source of data corroborates the

same finding, while non-convergence refers to when different sources of data address

different findings [66]. As illustrated in Table III, this type of triangulation is used in

Papers B, C, E, F, G, I, and K, where we have used more than one source of information,

such as interviews, surveys, and analysis of documents. In these papers, both convergent

and non-convergent source triangulation strategies are used.

Observer (researcher) triangulation refers to using more than one observer to gather and

interpret data [73], [89]. This type of triangulation was achieved in all papers included in

this thesis, where at least two of the involved researchers worked together in different

roles during the studies, thus enabling peer debriefing and the analysis of the collected

data. For example, in the SLR in Paper A, two researchers independently examined

several of the retrieved publications to ensure that they were suitable and equivalently

analyzed. To reduce the risk of subjectivity during the classification and extraction phase,

performed by only one researcher, several publications were examined by at least two

researchers in order to ensure that the returned publications were suitable and equivalently

analyzed.

www.manaraa.com

36

Methodological triangulation refers to combining different types of data collection

methods, such as a combination of both qualitative and quantitative methods [73], [89].

According to [65], the goal of using different types of data collection is that this

triangulation strategy “has the potential of exposing unique differences or meaningful

information that may have remained undiscovered with the use of only one approach or

data collection technique in the study”. As illustrated in Table III, this type of

triangulation was used in Papers B, C, E, F, G, I, and K, where we have used more than

one type of data collection method.

www.manaraa.com

37

8. Overview of Papers and Findings

In order to provide an overview of the work presented in this thesis, this chapter presents

the studies included in this Ph.D. thesis and explains how they are related.

Each paper is described in two sub-sections, where the first section (study summary)

describes the study’s goal, the research questions addressed, the selected research

approach, the research category, and, finally, the research method used. In the second

sub-section (results), the results and contributions from each of the included studies are

presented and synthesized. This second sub-section also sets out to discuss how the papers

are related and describes how each of the papers contribute to answering the research

question formulated in chapter 4 and presented in Figure 9.

8.1. Paper A: Managing Architectural Technical Debt: A unified

model and systematic literature review

The following sections will briefly describe Paper A. More details of this study are

reported in Chapter 9.

8.1.1. Study Summary

The goal of this study was to synthesize and compile the current ‘state-of-the-art’ in the

ATD field by conducting a systematic literature review focusing on the following

research areas: ATD in terms of principal, interest, debt, and related challenges and

solutions for managing ATD. Brereton et al. [90] state that software engineering

systematic reviews can be categorized as being qualitative in nature, and, with this

information as background, we conclude that our study is both qualitative and quantitative

in nature, where the qualitative approach refers to the synthesizing process of the

reviewed publication, and the quantitative approach refers to the mapping of the retrieved

number of publications into the study’s unified model. However, the approach used in

this paper has a strong emphasis on a qualitative approach with less emphasis on a

quantitative approach.

The study was conducted by automatically searching in six well-known digital libraries:

the ACM Digital Library, IEEExplore, ScienceDirect, SpringerLink, Scopus, and Web of

Science, as well as a manual hand search in all the proceedings of a key conference on

the subject: the International Workshop on Managing Technical Debt (MTD Workshop).

Additionally, we also conducted both a forward and backward snowballing technique to

the retrieved publications.

The target of the search term was defined so as to search in both title and abstract, and the

search term (query) contained the keywords: “technical debt” AND architec∗. The

search was conducted in April 2017 and included publications between 2005–2016.

To screen the most interesting and relevant publications for this review, a filtering

technique based on five different stages was used. In the first stage, 166 publications from

the different data sources were retrieved and merged. The second stage of finding and

www.manaraa.com

38

removing duplicates resulted in reducing the number of publications to 79. The third stage

was applied after the full texts were retrieved, where each publication was checked using

the defined inclusion and exclusion criteria. This stage returned 38 publications, to which

the snowballing technique was applied in the fourth stage. In stage five, we again applied

the inclusion and exclusion criteria to the publications retrieved using the snowballing

technique, which returned 42 publications for a detailed quality assessment. In the sixth

stage, the publications went through an assessment process, with the goal of assessing the

quality of all publications. Finally, in the seventh stage, data were extracted from each of

the 42 included primary publications. Based on these 42 publications, we conducted a

synthesis, including a descriptive synthesis and a quantitative summary (meta-analysis),

by studying selected venues, numbers of publications per venue, publication types, and

publications per year.

There was a wide agreement in the reviewed publications that ATD is of primary

importance to software development. However, it was observed that ATD is described in

a scattered and inconsistent manner. Consequently, we concluded that, in order to derive

more value from the results concerning ATD and its effects, a holistic model depicting

different views and their implications was required. We thus constructed a novel

descriptive model that provided an overall understanding of existing knowledge in the

research area of ATD, with the aim of providing a comprehensive interpretation of the

ATD phenomenon. This model clarifies the different aspects of each research question

and assembles relationships between them, together with an ATD identification checklist,

recognized ATD impediments, and identified ATD management strategies.

8.1.2. Results (contributing to RQ1.1)

The main objective of this study was to elucidate and contribute to an extended

knowledge base in the research area of ATD, and to build a collective platform for future

research. The contributions of this study are both in the academic and practical aspects.

First, the study shows that there is no single unified and overarching description or

interpretation of ATD, and we, therefore, provide a ‘state-of-the-art’ review of significant

issues which identifies aspects of previous studies and examines how these studies have

been conducted. This study also provides a novel descriptive model that can support the

process of more informed management of the software development lifecycle, with the

goal of raising the system’s success rate and lowering the rate of negative consequences

for both the academic and practitioner community. This will allow practitioners and

researchers to use this model to assess and recognize what problems might occur while

dealing with ATD, as well as the consequences of these challenges being left unattended.

This study also shows that there is a compelling need for supporting tools and methods

for system monitoring and evaluation of ATD, but also shows that no software tools

covering the full spectrum of ATD are currently available. Furthermore, the results

demonstrate that maintenance and evolvability are the main challenges within ATD, due

to the fact that all of the ATD challenges are related to compromises in these quality

attributes. This paper highlights that practitioners in general lack strategies for

architectural refactoring, and such activity might, therefore, result in an ad-hoc process

where the results are inadequate. Consequently, this paper provides several key

www.manaraa.com

39

dimensions that need to be taken into consideration when defining a refactoring strategy

for ATD issues. In addition, this study demonstrates, to both practitioners and academics,

the relevance of dedicating more attention and effort to remediate ATD during the

software lifecycle, in order to decrease the level of negative impact due to ATD on daily

software development work.

Together with the findings in Paper D, this study answers the first sub-question of the

first research question (RQ1.1) by presenting several negative effects of ATD, as

illustrated in Figure 10. The negative impact of ATD can lead to severe and costly

maintenance overheads which, in the long run, can diminish an organization’s ability to

innovate and evolve. ATD can also result in restricted flexibility, decreased reliability,

and performance degradation.

Figure 10: Characteristics of ATD, based on the results from Paper A.

8.2. Paper B: Time to Pay Up – Technical Debt from a Software

Quality Perspective

The following sections will briefly describe Paper B. More details of this study are

reported in Chapter 10.

8.2.1. Study Summary

The results of the SLR showed that, within the reviewed publications, the most frequently

identified negative effects caused by ATD were compromises of maintainability and

evolvability, which led to this second study, where we empirically investigated in which

manner TD affects different software quality attributes.

The second sub-question of the first research question (RQ1.2) in this thesis addresses

how TD affects different software quality attributes. In order to be able to answer RQ1.2,

we conducted a study with the aim of understanding which quality issues have the most

www.manaraa.com

40

negative impact on the software development lifecycle process, and to determine the

association of these quality issues in relation to the age of the software, as well as to relate

each of these quality issues to the impact of different TD types. This study was conducted

through a combination of qualitative and quantitative research approaches and was

conducted in three different stages.

First, we group-interviewed 43 software practitioners, with the goal of understanding

which of the quality attributes were the most negatively affected by TD. This stage also

included an assessment of compromised quality attributes by an in-depth analysis,

examining nine different TD issues, and evaluating the impact each of these had on

different quality attributes listed by ISO/IEC. In the second stage, an online survey was

used, providing quantitative data from 258 software participants. In the third stage, we

conducted seven semi-structured follow-up group interviews with a total of 32 industrial

software practitioners.

8.2.2. Results (contributing to RQ1.2)

The second sub-question of the first research question (RQ1.2) addresses how TD affects

different software quality attributes, which is addressed in this paper. This paper provides

an empirically based study on how practitioners experience and perceive TD in terms of

compromised quality attributes and their relation to wasted working time, based on both

quantitative and qualitative data.

First, the results of this study show that practitioners identified maintenance difficulties,

a limited ability to add new features, restricted reusability, poor reliability, and

performance degradation issues as the quality attributes with the most negative effect on

the software development lifecycle. When analyzing these five quality attributes, the

summary statistics from the survey showed that 60% of all respondents frequently or very

frequently encounter maintenance difficulties during the software lifecycle, 45% of the

respondents frequently or very frequently encounter restricted reusability, and 39% of the

respondents frequently or very frequently encounter a limited ability to add new features.

Secondly, we found no evidence for the generally held opinion that maintenance

complications increase with the age of software. When studying how the different

examined quality attributes were compromised with respect to the age of the software,

our results showed that there were only significant differences in how the respondents

encountered maintenance difficulties regarding its age. Furthermore, our results showed

that, for software older than 20 years and for systems within the age interval of 2–10

years, the respondents encounter maintenance difficulties most frequently, and, for

systems within the interval of 10–20 years, a limited ability to add new features is the

most frequently encountered problem. Respondents who reported restricted reusability as

the most frequently encountered quality issue had software with an average age of less

than two years. This study could thus not confirm the generally held view that the amount

of compromised quality attributes increases with system age, but our results imply that it

is important to remediate TD very early in the lifecycle in order to keep the frequency of

compromised quality attributes down.

www.manaraa.com

41

Thirdly, we show that TD affects not only software productivity (in terms of wasted time)

but also that several quality attributes of the system were negatively affected by TD. The

results showed that there is a significant positive linear correlation between the frequency

of encountering all of the investigated quality issues and the estimated amount of wasted

time. The strongest relationship was found between the frequency of encountering poor

reliability and wasted time, followed by a limited ability to add new features and

maintenance difficulties.

These findings highlight the importance of understanding how TD negatively affects

overall system quality in order to proactively manage it in terms of allocating time,

resources, and additional effort. These findings provide strong empirical confirmation

that both practitioners and academics need to focus more attention and effort on

deliberately remediating TD, in order to reduce future costly interest payments.

8.3. Paper C: The Pricey Bill of Technical Debt – When and by

Whom Will it be Paid?

The following sections will briefly describe Paper C. More details of this study are

reported in Chapter 11.

8.3.1. Study Summary

From Paper A, it was evident that limited knowledge and few supporting tools are

available to measure the extent of TD within a software application, and, in addition, the

time spent on TD related issues is not made explicitly visible and measurable. The lack

of this knowledge can result in the fact that software development organizations are not

aware of the interest that they are paying on TD, and therefore they might not give TD

management the necessary attention.

The third sub-question of the first research question (RQ1.3) addresses the negative

impact on development productivity due to TD. This question is answered in two studies

(Papers C and E), both exploring the amount of waste of working time due to TD. This

research study also addresses RQ2.1 and RQ2.2, focusing on the impact of TD

remediation and prevention activities and its impact on reducing the negative effects of

TD.

This first study’s goal was to empirically investigate how software practitioners perceive

and estimate the interest payment of TD. More specifically, the main goal of the study

was to examine the amount of estimated wasted time caused by TD interest during the

software lifecycle. The aim of this study was also to investigate what type of TD generates

the most negative effects and the activities on which the extra time was spent as a result

of TD. Furthermore, this study also examined the ways in which the age of the software

system affected the wasted time, the frequency of encountering different TD types, and

the frequency of having to perform the extra activities. Finally, this study also investigates

the ways in which different professional software roles are affected by these artifacts.

To accomplish this goal, we conducted a study using a combination of qualitative and

quantitative research approaches. First, an online survey was sent to seven companies

www.manaraa.com

42

within our networks with an extensive range of software development, and invitations

were also published in software engineering-related networks on LinkedIn. In total, this

survey returned 258 complete answers (completion rate of 83%). Secondly, we conducted

follow-up interviews with 32 industrial software practitioners, who had all participated in

the first survey. During the semi-structured interviews, the compiled results from the

previous survey were presented to the interviewees, where some of the most interesting

findings were highlighted together with questions related to the specific area of research.

This presentation allowed the interviewees to more easily relate the interview questions

to the results of the survey.

8.3.2. Results (contributing to RQ1.3, RQ2.1, and RQ2.2)

The third sub-question of the first research question (RQ1.3) attempts to explore the

negative impact on development productivity due to TD, which is addressed in Papers C

and E. In both these studies, we have used the amount of wasted time as a proxy for

productivity.

This study offers a contribution to TD research, with respect to the existing body of

knowledge, in several respects. The single most striking result emerging from this study

is that, on average, software practitioners estimate that 36% of all software development

time is wasted due to paying the interest of TD. The result reveals that the majority of the

wasted time is spent on understanding and/or measuring TD. When studying how

different professional roles perceive TD, this result reveals that different roles are affected

differently by TD. We found that different roles waste time on different activities, hence

experiencing different negative impacts of TD. When examining whether, and in what

way, the amount of perceived wasted time varies with respect to the age of the software,

this study shows that the degree of the wasted time does vary. Although the amount of

wasted time result does not show a linear progression, the result shows that wasted time

varies in relation to the system’s age.

Further, the findings of the second research questions (RQ2.1 and RQ2.2) focusing on

prevention and remediation activities, in order to reduce the negative effects of TD,

indicate that organizations can lower the amount of waste of working time (and thereby

increase the productivity) by continuously preventing the introduction of TD in the first

place and reducing the amount of TD by remediation activities, which means that

software companies could benefit from raising their awareness about the amount of time

and resources they are spending on TD, and to deliberately focus on preventing and

remediating their TD.

8.4. Paper D: Impact of Architectural Technical Debt on Daily

Software Development Work – A Survey of Software

Practitioners

The following sections will briefly describe Paper D. More details of this study are

reported in Chapter 12.

www.manaraa.com

43

8.4.1. Study Summary

An important and interesting result from the previous study (Paper C) showed that when

software practitioners estimate the negative impact of several different types of TD, they

perceive that ATD generates the most negative impact on their daily software

development work (closely followed by Requirement TD).

The first sub-question of the first research question (RQ1.1) addresses the negative impact

of architectural TD. Based on the previous results from Paper A, in Paper C we conducted

a more in-depth analysis of the architectural related aspects of TD.

The goal of this study was to examine how software practitioners perceive and estimate

the impact of specifically ATD during the software development process from several

different aspects. The first goal set out to examine the level of negative effects ATD has

on the daily software development work and compare this level with the negative effects

of other types of TD. Secondly, we aimed to understand whether the level of the negative

effects due to ATD correlates with the estimated wasted development time during the

software lifecycle. Thirdly, the negative effects due to ATD is commonly believed to have

an increasingly negative impact with respect to the age of the software. Finally, this study

aimed to assess the extent to which the level of negative effects due to ATD differs in

relation to the age of the system and whether different professional roles are affected

differently by specific ATD.

The data in this study were collected via surveys. This paper is to some extent also related

to our previous paper, Paper C, wherein we study and compare several different TD types.

However, even if the data are collected using the same survey, this study focuses on the

architectural aspects of TD and does not focus on other types of TD besides ATD. By

focusing specifically on ATD, this means that we can provide a more in-depth analysis

of the architecturally related issues of TD as well as a more detailed statistical analysis of

the data.

8.4.2. Results (contributing to RQ1.1)

The first sub-question of the first research question (RQ1.1) concentrates on the negative

impact of architectural TD. This question is answered in Papers A and D, where in Paper

D we study the negative impact ATD has on the overall daily software development work,

with respect to wasted working time and additional activities performed.

First, the results of this study show that practitioners experience that ATD has the highest

negative impact on daily software development work. The results of the study also show

that the level of negative impact due to ATD is introduced early, and thereafter remains

during the entire software lifecycle. Based on evidence from our survey, this study does

not support the currently held belief that the negative effects due to ATD increase with

respect to the age of the system. This study also provides new insights into ATD research

by showing that, despite the different responsibilities and working tasks of software

professionals, ATD negatively affects all roles without any significant difference between

these roles. This study contributes to an empirical confirmation that software companies

www.manaraa.com

44

need to invest in continuous refactoring from the conception of the system in order to

maintain the negative effect generated by ATD at a future low level.

8.5. Paper E: Software Developer Productivity Loss Due to

Technical Debt – A replication and extension study examining

developers’ development work

The following sections will briefly describe Paper E. More details of this study are

reported in Chapter 13.

8.5.1. Study Summary

In the previously presented paper, Paper C, the results show that software engineers

estimate that, on average, they waste 36% of their software development time due to TD.

Even if the respondents in that study were experienced in software development, and their

estimates were likely to be formed by what they have heard, observed, and experienced

at their workplaces, we were intrigued by the idea of conducting an additional study where

the wasted time could be studied by using reported data instead of a single occurrence

based on perception and estimates. In order to further answer RQ1.3, we extended the

previous research exploration by incorporating a longitudinal study where software

developers reported their experience and interest due to TD (instead of using single

estimates) twice a week for seven weeks. The goal of this study was to explore the

negative consequences of TD in terms of wasted software development time as a proxy

for productivity. This study also investigates on which additional activities this wasted

time was spent and whether different types of TD impacted the wasted time differently.

It also set out to examine the benefits of tracking and communicating the amount of

wasted time, from both a developer’s and manager’s perspective. This study reports the

results of a longitudinal study surveying 43 developers (473 data points) and includes 16

interviews, followed by a validation by an additional study using a different and

independent dataset (n = 47, 177 data points) focusing on replicating the findings. This

research study also addresses RQ2, focusing on the impact of TD remediation and

prevention activities.

8.5.2. Results (contributing to RQ1.3, RQ2.1, and RQ2.2)

The third sub-question of the first research question (RQ1.3) concentrates on the amount

of wasted software development time, as a proxy for software development productivity.

This study makes a novel contribution to the TD research, where the analysis of the

reported wasted time revealed that developers report that they waste, on average, 23% of

their software development time due to TD and that the wasted time is most commonly

spent on performing additional testing, followed by conducting additional source code

analysis and performing additional refactoring. The results also reveal that, on a quarter

of the occasions where developers encounter TD, they are forced to introduce additional

TD due to the already existing TD. The results from the replication study were, overall,

www.manaraa.com

45

in line with the results from the original study regarding the amount of waste of working

time and the ways different technical debt types affect the wastage.

By studying the tracking process of the wasted time, it was apparent that none of the

examined companies tracked or measured the amount of wasted time due to TD, and none

of the companies had an aligned strategy for addressing the interest of TD. In addition,

this study shows that both developers and managers clearly see the benefits of tracking

the amount of wasted time, yet both professions are somewhat reluctant to implement

such measures in practice. This “unwillingness” is recognized as a challenge by the

companies.

Further, the findings of the second research question (RQ2) show that, in a quarter of the

occasions where developers encounter TD, they are forced to introduce additional TD due

to the already existing TD. This burden of being forced to introduce additional TD

demonstrates the contagiousness of TD, and our results suggest that TD should be

prioritized for refactoring because it forces the developers to introduce further additional

TD, which generates even more interest. This finding shows that conducting both

prevention and remediation activities of TD, with the goal of reducing the amount of TD,

will also reduce the waste of working time and thereby increase overall developer

productivity.

8.6. Paper F: The Influence of Technical Debt on Software

Developer Morale

The following sections will briefly describe Paper F. More details of this study are

reported in Chapter 14.

8.6.1. Study Summary

The previously described studies in Papers A, B, C, D, and E demonstrate the negative

consequences of TD and ATD, from both a technical and an economic perspective.

However, TD can also affect developers’ psychological states and morale, which is the

primary focus in RQ1.4. This research study also addresses RQ2.2, focusing on the impact

of TD remediation activities.

Drawing on the previous literature on morale, this study explores the influence of TD and

its management on three dimensions of morale: affective, future/goal, and interpersonal

antecedents. Furthermore, in order to understand whether their morale affects the

developer's work productivity, this study explores associations between morale and the

amount of reported wastage of working time due to experiencing TD. In this study, we

followed a mixed-methods approach to both quantitative and qualitative research. The

quantitative approach was performed through the first survey with 33 software developers

followed by a second survey with 43 developers (collecting 473 data points), and the

qualitative part of the study was conducted through 15 semi-structured interviews.

www.manaraa.com

46

8.6.2. Results (contributing to RQ1.4, and RQ2.2)

The fourth sub-question of the first research question (RQ1.4) investigates the negative

impact TD has on developers’ morale and is addressed in Paper F.

This study has several contributions to both software engineering research and practice.

The study specifically concentrates on investigating the influence of TD on developers’

morale and its correlation to productivity. While the study is based on previous literature

on morale, the findings from this study make several contributions to the present TD

research.

The results from this study indicate that the occurrence of TD reduces developers’ morale

since the presence of TD hinders the developers’ progress and reduces their confidence.

Further, the results imply that proper management of TD increases developers’ morale

since it enables developers to perform their tasks better and to improve software quality

in the future.

Further, the findings of the second research question (RQ2.2) in this study suggest that

proper TD management can lead to a virtuous cycle where the right culture and TD

prevention mechanisms reinforce each other, leading to less waste of time, followed by a

continuous increase of the developers’ morale and productivity.

8.7. Paper G: Technical Debt Management: Current State of

Practice

The following sections will briefly describe Paper G. More details of this study are

reported in Chapter 15.

8.7.1. Study Summary

As previously shown in all the publications mentioned above, TD has a negative impact

on software development from various different perspectives, and the results from these

publications demonstrate the relevance of paying more attention and effort to actively

managing and remediating TD. When implementing a TD management strategy, the

tracking of the TD is an important key activity. Therefore, this thesis’ research question

(RQ2.3) focuses on the impact of TD tracking initiatives on overall software

development.

This study was conducted using both qualitative and quantitative methods. First, we

conducted a survey of 226 respondents from 15 organizations and followed up with

multiple case studies at three companies that have started tracking TD. The case study

included 13 semi-structured interviews and a collection of 79 TD-related documents.

8.7.2. Results (contributing to RQ2.3)

The third sub-question of the second research question (RQ2.3) examines the impact of

TD tracking processes and is addressed in both this paper and in Paper J. The results from

this study show that software practitioners estimate that, on average, they spend a

www.manaraa.com

47

substantial amount of their working time trying to manage TD and only a few of them

have started tracking TD, where 7.2% of them apply a systematic tracking process in this

regard. The results further show that the major reasons for this noticeably low proportion

of companies having an implemented TD tracking process are due to lack of knowledge

of what is necessary to implement it in terms of tools and processes, as well as a lack of

awareness of what the negative effects of TD are before they occur. In order to help the

initialization process for TD tracking, we propose a Strategic Adoption Model

(SAMTTD). This model can be used by practitioners to assess their TD tracking process

and to plan their next steps.

8.8. Paper H: Embracing Technical Debt, from a Startup Company

Perspective

The following sections will briefly describe Paper H. More details of this study are

reported in Chapter 16.

8.8.1. Study Summary

Today, most research on TD has been focused on mature software teams and

organizations, who may have less pressure to position new and innovative software

quickly in a new market and, therefore, reason about TD quite differently than software

startups, for example. In this study, we seek to understand the organizational factors that

lead to, and the benefits and challenges associated with, the intentional accumulation of

TD in software startups. In this study, we interviewed 16 professionals involved in seven

different software startups.

The first sub-question of the third research question (RQ3.1) focuses on the consequences

of TD in context-specific domains and, more specifically, addressing the challenges and

benefits of deliberately introducing TD for software startups.

8.8.2. Results (contributing to RQ3.1)

Our results show that software startups differ significantly from mature organizations in

how they accumulate and manage TD. We find that the startup phase, the experience of

the developers, software knowledge of the founders, and the level of employee growth

are some of the organizational factors that influence the intentional accumulation of TD.

In addition, we find that software startups are typically driven to achieve a “good enough”

level, and this guides the amount of TD that they intentionally accumulate to balance the

benefits of speed to market and reduced resources with the challenges of later addressing

TD. This study also presents several benefits of intentionally taking on TD, where these

kinds of strategic decisions are taken by practitioners being relatively aware of the

harmful effects these decisions can have on the future software in terms of impeding

innovation and expansion of their software systems. Further, this study also provides a

set of recommendations and a first strategy that can be used by software startups to

support their decisions related to the accumulation and refactoring of TD.

www.manaraa.com

48

8.9. Paper I: How Regulations of Safety-Critical Software Affect

Technical Debt

The following sections will briefly describe Paper I. More details of this study are

reported in Chapter 17.

8.9.1. Study Summary

In today's software industry, the use of safety-critical software (SCS) is increasing at a

rapid rate. However, little is known about the relationship between the safety-critical

regulations in this type of software and TD. While there are several similarities between

non-SCS and SCS, there are also several major differences. One of the most significant

differences is that SCS is heavily regulated and requires certification against industry

standards. These standards have, among other issues, an adverse impact on the process of

conducting refactoring tasks. This study focuses primarily on the consequences and

effects of SCS on TD, the factors influencing the decision-making of TD refactoring, and

also what software architectural structures contribute to TD refactorings in SCS. In this

study, we interviewed nine practitioners working in different safety-critical domains

implementing software according to different safety regulation standards.

This research study addresses RQ2.1 and RQ2.2, focusing on the impact of TD

remediation and prevention activities in order to reduce the negative effects of TD.

Further, this study also addresses the second sub-question of the third research question

(RQ3.2) by focusing on the consequences of TD in context-specific domains, more

specifically the impact regulatory requirements have on TD Management in a safety-

critical software context.

8.9.2. Results (contributing to RQ2.1, RQ2.2, and RQ3.2)

The results of this study show that performing TD refactoring tasks in SCS requires

several additional activities and costs, compared to non-safety-critical software.

The findings of the research questions RQ2.1 and RQ3.2 show that the SCS regulations

strengthen the implementation of both source code and architecture and thereby initially

limit the introduction of TD. However, at the same time, the regulations also force

software companies to perform later suboptimal workaround solutions that are

counterproductive to achieving high-quality software since the regulations constrain the

possibility of performing optimal TD refactoring activities.

Further, when addressing RQ2.2, the result shows that SCS regulations have an

immediate and adverse impact on the refactoring and remediation activities of TD. Due

to additional costs and the need for additional activities due to the regulations,

practitioners frequently avoid performing refactoring activities, with the consequence of

introducing additional TD in the form of, for example, suboptimal workaround solutions.

www.manaraa.com

49

8.10. Paper J: Technical debt triage in backlog management

The following sections will briefly describe Paper J. More details of this study are

reported in Chapter 18.

8.10.1. Study Summary

Remediation of TD through regular refactoring activities in the software are considered

vital for the software system's long and healthy life. However, to select the TD tasks that

should be refactored, one must first prioritize the different identified TD tasks.
Therefore, this study's goal is to explore how the prioritization of TD is carried out by

practitioners within today’s software industry and also to investigate which factors

influence the prioritization process and its related benefits and challenges. This paper

reports the results of surveying 17 software practitioners, together with follow-up

interviews. The second sub-question of the second research question (RQ2.2) focuses on

the impact TD remediation initiatives have on software development, and this question is

partly answered in this paper. This paper also addresses RQ2.3 by focusing on how the

TD items are tracked in, e.g., backlogs.

8.10.2. Results (contributing to RQ2.2, and RQ2.3)

This study's results show that there is no uniform way of prioritizing TD and that it is

commonly done reactively without applying any explicit strategies. Further, the results

show that often the TD issues are managed and prioritized in a shadow backlog, separate

from the official sprint backlog. Even if the TD items sometimes are escalated by the

transition from the shadow backlog into the main backlog, this transition is not clear in

terms of when and if the TD item should be transferred. This way of administrating TD

items could potentially lead to the TD items becoming not fully visible and known during

the prioritization process, and thereby, not given sufficient attention.

Further, the second sub-question in the second research question (RQ2.2) focuses on the

impact of remediation activities, and the result of this study shows that the process

regarding which TD item to prioritize is heavily influenced by gut feelings among the

decision-makers, and whether the user of the software is an external or internal character

also influences the prioritization strategy of TD. Further, when answering RQ2.3, the

results indicate that TD items are not sufficiently visible and tracked in the official

backlogs and thereby not prioritized accordingly.

8.11. Paper K: Carrot and Stick approaches when managing

Technical Debt

The following sections will briefly describe Paper K. More details of this study are

reported in Chapter 19.

www.manaraa.com

50

8.11.1. Study Summary

Even if practitioners working in today's software development industry are quite familiar

with the concept of TD and its related negative consequences, there has been no empirical

research focusing specifically on how software managers actively communicate and

manage the need to keep the level of TD as low as possible. Similar to other professionals,

software engineers’ work outcomes, attitudes, and work behaviors are influenced by a

company's corporate culture together with the managers’ mindset. This means that

managers can have a very large impact on the overall software development process by

adopting different management strategies and using techniques for controlling and

directing software engineers to achieve pre-determined goals.

The second sub-question of the second research question (RQ2.2) focuses on remediation

activities and is partly answered in this paper by studying how managers can influence

practitioners addressing TD, where this study explores how software companies

encourage and reward practitioners for actively keeping the level of TD down, and also

whether the companies use any forcing or penalizing initiatives when managing TD. The

research questions in this study focus on how common each of those four strategies and

whether software engineering practitioners perceive these TD management strategies as

effective or desirable. This paper reports the results of both an online survey providing

quantitative data from 258 participants and follow-up interviews with 32 industrial

software practitioners.

8.11.2. Results (contributing to RQ2.2)

The results show that having a TD management strategy (based on the four assessed

strategies) can significantly impact the amount of TD in the software by adopting, e.g.,

different remediation initiatives.

When surveying how commonly different TD management strategies are used, we found

that only the encouraging strategy is, to some extent, adopted in today's’ software

industry. Further, this result shows that there is an unfulfilled potential for managers to

impact how practitioners can reduce and remediate TD by adopting a TD management

strategy based on encouragement. This study also provides a model describing the four

assessed strategies by presenting strategies and tactics, together with recommendations

on how they could be operationalized in today’s software companies.

www.manaraa.com

51

9. Managing Architectural Technical Debt

In this chapter, we synthesize and compile research efforts with the goal of creating new

knowledge with a specific interest in the Architectural TD (ATD) field.

Large Software Companies need to support the continuous and fast delivery of customer

value in both the short and long term. However, this can be impeded if the evolution and

maintenance of existing systems are hampered by what has been recently termed

Technical Debt (TD). Specifically, ATD has received increased attention in the last few

years due to its significant impact on system success and, left unchecked, it can cause

expensive repercussions. It is therefore important to understand the underlying factors of

ATD. With this as background, there is a need for a descriptive model to illustrate and

explain different ATD issues. The contribution of this paper is the presentation of a novel

descriptive model, providing a comprehensive interpretation of the architectural TD

phenomenon. This model categorizes the main characteristics of ATD and reveals their

relations. The results show that, by using this model, different stakeholders could increase

the system’s success rate, and lower the rate of negative consequences, by raising

awareness about ATD.

9.1. Introduction

In 1992, Ward Cunningham [91] introduced the financial metaphor of Technical Debt

(TD) to describe the need for recognizing the potential long-term and far-reaching

negative effects of immature code, made during the software development lifecycle,

which has to be repaid with interest in the long term. Cunningham used the financial terms

of debt and interest when describing TD: “Shipping first-time code is like going into debt.

A little debt speeds development so long as it is paid back promptly with a rewrite. Objects

make the cost of this transaction tolerable. The danger occurs when the debt is not repaid.

Every minute spent on not-quite-right code counts as interest on that debt.” Another, more

recent, a definition was provided by Avgeriou et al. [4] who define TD as “In software-

intensive systems, technical debt is a collection of design or implementation constructs

that are expedient in the short term, but set up a technical context that can make future

changes more costly or impossible. Technical debt presents an actual or contingent

liability whose impact is limited to internal system qualities, primarily maintainability

and evolvability.”

Today, large-scale software companies strive to increase their efficiency in each lifecycle

phase, by reducing time and resources deployed by the development teams. To achieve

this goal of delivering high-quality systems, software architecture is especially important

This chapter has been published as:

Managing architectural technical debt: A unified model and systematic literature

review

Terese Besker, Antonio Martini, and Jan Bosch,

Journal of Systems and Software, vol. 135, pp. 1-16, 2018

www.manaraa.com

52

and should contribute to a minimal maintenance effort. [92] states that maintenance

activities consume 50-70% of the total effort spent during a typical software project. Left

unchecked, these maintenance activities can make the architecture diverge towards a

suboptimal state, and, in the worst-case scenario, towards system obsolescence or crisis

[93]. During the development of large-scale systems, software architecture plays a

significant important role [18], and consequently, a vital part of the overall TD relates to

sub-optimal architectural decisions and is regarded as Architectural Technical Debt

(ATD) [94], [23]. ATD is primarily incurred by architectural decisions with the

consequence of immature architectural artifacts and compromised quality attributes [95].

ATD commonly refers to violations of best practices [93], consistency and integrity

constraints of the architectures, or the implementation of immature architecture

techniques. These consequences primarily result from the compromise of modularity,

reusability, analyzability, modifiability, testability, or evolvability during software

architecting [96]. ATD does not always receive the full attention from the architect and

management teams due to the fact that ATD typically concerns the cost of the long-term

maintenance and evolution of a software system instead of the visible short-term business

value. Another reason for this is that ATD is hard to identify and measure since it is not

easily visible [28] within the codebase. The visibility of ATD, generally first occurs when

the system significantly reveals shortcomings or complications in the maintenance or

operation [22]. TD management involves navigating a path that considers both value and

cost, to focus on overall ROI over the software lifecycle [97] for all different types of TD,

and, although a great deal of theoretical work on the architectural aspects of TD has

recently been produced, practical ATD Management (ATDM), with an architectural

focus, lacks empirical studies [98].

ATD is evidently detrimental to software companies, and since ATD has such a

significant negative impact on software systems [95],[94], it is important to understand

what it is and of what it is composed. This study focuses on different ATD categories and

their related effects and thereby becomes highly relevant when providing a platform for

analyzing different ATDM strategies, solutions, and challenges. To date, we have not

found any studies describing this issue in a unified way, which could facilitate the

challenges of understanding and manage ATD in an overall context. Research can benefit

from research synthesis techniques that help summarize and assess the body of results

accumulating in the literature [99]. Therefore, to explore and understand these concerns

in a more comprehensive context, a systematic literature review is conducted in the area

of ATD, with research questions focusing on the current knowledge regarding debt,

interest, principal and existing challenges, and solutions in managing ATD.

This unified model and literature review can be of benefit from a variety of academic

perspectives. For researchers interested in the architectural aspects of TD, the research

agenda for ATD helps to build upon already existing work and guide efforts towards new

research directions. For practitioners, the unified model can help to identify ATD and to

evaluate what problems might occur while dealing with ATD, and the consequences of

these challenges are left unattended.

The objective of this study has been achieved by employing a thorough Systematic

Literature Review (SLR) research method [100]. SLR is a well-established research

www.manaraa.com

53

method for conducting a structured and systematic way of performing a review using a

protocol by formally defining each process within the review process.

The main objective of this study is to clarify and contribute to an extended knowledge

base in the research area of ATD and to create a common platform for future research.

The contributions of this study are as follows:

1. We present results showing that there is no one unified and overarching description

or interpretation for ATD and, therefore, a ‘state-of-the-art’ review of significant

issues is provided, concerning various ATD issues.

2. This study identifies aspects of previous studies and examines how the studies have

been conducted.

3. This study provides a novel descriptive model that provides an overall

understanding concerning knowledge currently of interest in the research area of

ATD. This unified descriptive model can support the process of more informed

management of the software development lifecycle, with the goal of raising the

system’s success rate and lowering the rate of negative consequences for both the

academic and practitioner community.

4. Having this visual and unified model in which stakeholders can rapidly obtain a

holistic overview is valuable. Researchers and practitioners can use this unified

model to evaluate and understand what problems might occur while dealing with

ATD and the consequences if these challenges are left unattended. In our unified

model, we provide a checklist of the aspects of ATD reported in the literature.

Researchers and practitioners can use this checklist as a general reference tool for

recognizing ATD.

5. This study shows that there is a compelling need for supporting tools and methods

for system monitoring and evaluating ATD, but also shows that no software tools

covering the full spectrum of ATD are yet available.

6. This study provides new insights into the refactoring of ATD research by showing

that practitioners, in general, lack strategies for architectural refactoring, and,

therefore, such activity might result in an ad-hoc process where the results are

inadequate. In this paper, we provide the key dimensions that need to be taken into

consideration when defining such a refactoring strategy.

7. To both practitioners and academics, this study demonstrates the relevance of paying

more attention and effort to remediate ATD during the software lifecycle, in order

to decrease the level of negative impact due to ATD on daily software development

work.

This paper is structured into nine sections. The following section introduces background

information that is used during a discussion of the results. In the third section, the SLR

method is described. The fourth section presents the results from the retrieval of

publications, and section five presents the results of the data collection of the publications.

Section six addresses the importance of ATD and the need for a unified model. Section

seven discusses the results of both the literature review and the unified model and

www.manaraa.com

54

analyzes the results of an ATD research agenda and lists the threats to the validity. Section

eight reviews the related research, while the last section, nine, concludes the paper.

This paper is an extension of the previously published paper that was originally published

at the 42nd Euromicro Conference on Software Engineering and Advanced Applications

(SEAA) in 2016 [101]. However, this paper includes several more surveyed publications,

since the timeframe when searching for publications was expanded to also include the

year 2016. We have also added both a forward and backward snowballing technique for

this extra time period. This paper also includes an additional research question, and,

consequently, new findings and a more in-depth analysis of all of the research questions

have been obtained. Moreover, the unified model offered is an extension of the previous

model presented in the abovementioned conference paper [101], where the model has

been enhanced by including an additional research question (importance of ATD - RQ1)

and updated research results for all of the different aspects of the model.

9.2. Background

In order to provide the reader with the necessary information that is needed to better

understand the remainder of the paper, this section provides a background to the ATD

domain. In this broad view, we examine what constitutes ATD in terms of debt, interest,

and principal and how it is managed with regard to related management processes, current

challenges, and analyzing support.

There are different types of TD, with Alves et al. [14] having identified and organized the

different types by considering the nature as a classification criterion for each TD type.

They identified 13 different types of TD, including Architectural TD, Build Debt,

Infrastructure TD, Requirement TD, Test Automation TD, and Code TD. Alves et al.

define ATD as referring “to the problems encountered in project architecture, for

example, violation of modularity, which can affect architectural requirements

(performance, robustness, among others). Normally this type of debt cannot be paid with

simple interventions in the code, implying in more extensive development activities.” In

a similar manner, Fernández-Sánchez et al. [24] describe ATD as being caused by

shortcuts and shortcomings in design and architecture or by the result of sub-optimal

upfront architecture design solutions, that become sub-optimal as technologies and

patterns become superseded.

9.2.1. Debt

In financial terms, a debt refers to the amount of money owed by one party (debtor or

borrower) to another party (creditor or lender) [30], where the obligation of the debtor is

to repay a larger sum of money to the creditor at the end of that period [31]. From a

software development perspective, the same term is used to describe the gap between the

existing state of a software and some hypothesized “ideal” state in which the system is

optimally successful [32].

[19] and [20] describe that taking on debt does not always arise from recklessness, TD

can also be created deliberately and inadvertently due to strategic decisions. ATD is

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7592594
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7592594

www.manaraa.com

55

commonly caused by architectural decisions (conscious or unconscious) that compromise

system-wide quality attributes, especially maintainability and evolvability [22] and can

be seen as expedient in the short term but can be more costly in the long term. These

shortcomings can be summarized as ATD, or architectural debt, in the sense that they are

system defects that can be improved to form an enhanced architectural software quality

and to avoid excessive interest payments in the form of decreasing maintainability.

9.2.2. Interest

Interest is the most commonly used financial term in TD research, and Ampatzoglou et

al. [30] define interest in their TD financial glossary list as: “The additional effort that is

needed to be spent on maintaining the software, because of its decayed design-time

quality.” Interest is the negative effects of the extra effort that has to be paid due to the

accumulated amount of debt in the system, such as executing manual processes that could

potentially be automated, excessive effort spent on modifying unnecessarily complex

code, performance problems due to lower resource usage by inefficient code, and similar

costs [7], [25]. It is vital that the elements and structures of ATD are regularly monitored

during the software lifecycle to support an analysis of how debt is building up with

interest.

9.2.3. Principal

In financial terms, principal refers to the original amount of money borrowed, and, from

a software development perspective, the same term is used to describe the cost of

remediating planned software system violations concerning TD, in other words, the cost

of refactoring. Ampatzoglou et al. [30] define principal within a TD context as: “The

effort that is required to address the difference between the current and the optimal level

of design-time quality, in an immature software artifact or the complete software system.”

The aggregate of the principal can be computed as a combination of the number of

violations in an application, the hours to correct each violation and the cost of labor [102].

With this type of informative background analysis, the management can decide when,

and how, to perform the refactoring of the ATD by deploying a refactoring strategy.

9.2.4. Software management process

The objectives of different software management activities performed during the ATD

Management process include the main activities of: identification, measurement,

prioritization, repayment, and monitoring [22]. The identifying activity includes locating

the ATD, identifying the causes, the compromised quality attributes, and the impact on

future development [103]. One of the most challenging activities during the ATDM is the

measuring of the quantitative characterization of the system-specific ATD items [32],

where designing and validating different measurement approaches are crucial for the

quality and reliability of this activity output. The prioritization activity should prioritize

the ATD items due to an in-depth assessment of the system’s business goals and

preferences. The prioritization is intended to reflect factors such as cost and technical

www.manaraa.com

56

issues, regarding financial and technical impacts on the system. Repayment refers to

making new or changing existing architecture decisions [22] in order to reduce or mitigate

the undesirable effects of ATD in the system. The last activity within the process is a

continuous integrated monitoring activity. This activity is based on an explicit and

consequently controlling feature, with the mission of monitoring the level of ATD over

time, identifying trends, and disseminating warnings at appropriate time intervals [32].

9.2.5. ATD challenges

One of the most challenging tasks encountered in the synthesis of ATD is how to translate

architectural complications or debt into economic consequences, by means of predicting

financial implications based on estimated values. A second key challenge is the estimation

that arrives at a strict probability without evidence-based historical data that can provide

an accurate estimate at the outset. Another challenge can be described in terms of the

principal costs (e.g. refactoring of an ATD component) being difficult to estimate

regarding the required working time, and Falessi et al. [104] state that the estimation of

principal costs can, on average, result in a large, +/- 80%, of the most probable value. A

key challenge during the estimation of interest can be explained by the implications of

the type of interest curve in relation to the time aspect. The interest can be characterized

by a curvature with a linear or nonlinear regression, which impedes the opportunities for

accurate estimation. A reason for interest becoming non-linear can be explained due to

contagion, caused by contaminants in other parts of the system with the same problem

[23].

9.2.6. ATD analyzing support

Despite the significant need for supporting tools and methods for analyzing ATD, most

of the available tools for analyzing TD focus on code level instead of the architectural

aspects [27]. These code-focusing tools generally cannot provide indicative information

for architectural trade-off since they can cause misleading results [41] and Nord et al. [97]

describe that the existing metrics for system quality visibility are insufficient and

unproven.

9.3. SLR method

The following section describes the method used for conducting this SLR. The SLR

technique originates from medical research and has recently been adapted to software

engineering. SLR is a secondary study method, meaning a study where the results from

several primary studies are collected. The goal of a secondary study is to provide both

researchers and practitioners with an overview of a specific field and also to identify gaps

in the available literature [105].

This review procedure is based on guidelines by an established SLR method, described

by [80]. The main rationale for undertaking a systematic review is to synthesize existing

work, and that the review should be carried out in accordance with a predefined search

strategy, which allows the search to be evaluated. The major advantage of using this

www.manaraa.com

57

method is that the result is provided by evidence, which is robust and transferable and

that sources of variation can be further studied [80]. A review protocol was used to ensure

rigor and repeatability involving the phases: a) define research questions, b) define search

process, c) define inclusion and exclusion criteria, d) define quality assessments, e) define

data collection, f) define data analysis, and g) define deviations from protocol.

9.3.1. Research question

As mentioned in Section I, the goal of this review is to obtain further knowledge on ATD

regarding its constituents (debt, interest, and principal) and its management (challenges

and solutions). Therefore, we will now define the following three main research questions

(RQs) and the six related sub-questions. Each sub-question is related to an aspect of ATD

defined in Section II.

RQ1: What is the importance of ATD in software development?

RQ2: What is the existing knowledge concerning ATD in terms of debt, interest, and

principal?

RQ2.1: What are the categories of ATD?

RQ2.2: What are the major negative effects caused by ATD?

RQ2.3: What refactoring strategies are mentioned for managing ATD?

RQ3: What are the existing challenges and solutions for managing ATD?

RQ3.1: Which ATDM activities are mentioned in the literature?

RQ3.2: Are there any specific challenges with ATD?

RQ3.3: Are there any analysis methods for detecting and/or evaluating ATD?

The first research question, RQ1, seeks to address the relevance and importance of ATD

to software development. The second research question, RQ2, concerns the existing

knowledge on debt, interest, and principal, where “existing knowledge” refers to

information captured from the retrieved publications. The first sub-question, RQ2.1,

focuses on different categories of ATD that will provide information on how debt is

described in the publications. Studying the outlined positive and negative effects caused

by ATD in RQ2.2 will provide an understanding of the effects relating to different quality

attributes (in terms of negative effects), which will be synthesized as interest. Question

RQ2.3 focuses on the refactoring strategies revealed in publications, and this will be

linked to the principal. The third research question, RQ3, aims at investigating challenges

and solutions for managing ATD. This question is divided into three different sub-

questions in order to increase the question’s focus. The results obtained from studying

which different ATD Management activities are stated in the reviewed publications by

the utilization of results of RQ3.1 will reveal which activities are used as notions in the

publications. RQ3.2 focuses on different kinds of challenges to the management of ATD

www.manaraa.com

58

and RQ3.3 concentrates on supporting activities for detecting and evaluating the software

architecture.

9.3.2. Search process

A searching strategy process should include: (1) defining a searching term (query), (2)

defining the target for the searching term, and (3) selecting different data sources with the

aim of identifying candidate publications [80].

Since “Architectural Technical Debt” is not a common expression in the title or the

abstract as a concatenated word sequence, publications that both contain the words

“technical debt” and architec* were studied.

The search term (query) contains the following keywords:

“technical debt” AND architec*

The searching terms were combined using a Boolean AND operator, which entails that

publications need to include both of the terms. Using the AND operator increases the

likelihood of more publications being reached in comparison to using the terms as a

concatenated word sequence.

To capture terms such as “architectural” and/or “architecture”, the asterisk character * is

used, known as a wildcard, to match one or more inflected forms of the searching term.

To increase the likelihood of finding publications addressing architectural aspects of TD,

the target of the search term is defined to search in both title and abstract.

The selection of data sources involved automatic searching in six well-known digital

libraries: the ACM Digital Library, IEEExplore, ScienceDirect, SpringerLink, Scopus,

and Web of Science. Additionally, in order to avoid overlooking important publications,

we performed a manual hand search in all the proceedings of a key conference on the

subject: the International Workshop on Managing Technical Debt (MTD Workshop). The

search was conducted in April 2017 and included publication within the timeframe of

2005-2016.

9.3.3. Snowballing

In software engineering, the primary recommended first step is using search strings in a

number of databases and thereafter to apply snowballing as a second step [106].

Furthermore, Webster and Watson [107] propose using both a backward and a forward

snowballing method, in order not to miss any potentially relevant publications.

Backward snowballing refers to using the reference list of the publications in order to

identify additional papers and forward snowballing refers to studies citing the publication

[87].

Snowballing is an iterative method where the first iteration uses as input the selected

publications from the first filtering stages and examines the referenced papers in

subsequent iterations. Each iteration follows the selection criteria in the same way as the

study selection phase as described in Section III, based on the title, abstracts, and on full

www.manaraa.com

59

text. The selected studies from the snowballing process were merged into the final results

of the publication selection. The snowballing search was conducted in May 2017.

9.3.4. Inclusion and exclusion criteria

SLRs require explicit inclusion and exclusion criteria to assess the fitness of the content

in each possible primary study with respect to the RQs.

The criteria should be based on the research questions, and be applied after the full texts

have been retrieved [80]. The inclusion and exclusion criteria that have been used in this

study are listed in Table I:

TABLE I - INCLUSION AND EXCLUSION CRITERIA

Criteria Assessment criteria

Inclusion Publications should define or discuss architectural issues in the context

of TD.

Inclusion Publications published in journals, in conference

proceedings, book chapters, and workshop proceedings

were decided to be included.

Inclusion Only publications written in English were included.

Exclusion Publications that only mention TD in an introductory statement and do

not fully or partly focus on its architectural aspects.

Exclusion Publication’s full text is not available (i.e. if the database used does not

allow access to the full text of the publication)

Exclusion Publications where the full paper is not possible to

locate (i.e. if the used database does not have access

to the full text of the publication).

Exclusion For conferences and workshop proceedings, publications earlier than

the year 2005, and later than 2016, were excluded.

Exclusion The publication is a secondary study, i.e. a literature review.

9.3.5. Quality assessment

To ensure that the selected publications comply with a certain quality, all publications

went through a quality assessment process to evaluate if they were of an adequate

standard. In order to make this assessment, each publication´s content was evaluated

using a set of questions in a checklist (Table II), where the answers were mapped

according to the options on a ranking scale.

The questions (QA1-3) in the checklist represent different assessment criteria, with a

focus on three diverse quality assessments relating to the quality that needs to be

www.manaraa.com

60

considered when evaluating the publications identified in the review. The assessment

criteria strive to appraise the quality of the publication (QA1), quality according to the

findings and results (QA2), and relevant to an ATD aspect (QA3).

The scoring procedure for QA1 was Journal = 4, Conference = 3, Book = 2, Workshop =

1, and for QA2-3 it was set at Excellent = 3, Good = 2, Fair = 1 and Poor = 0. The first

author coordinated the quality evaluation extraction process, and all authors contributed

to the quality assessment. If there were any disagreements during the scoring procedure,

the issues were discussed until we reached a mutual agreement.

TABLE II - QUALITY ASSESSMENT CRITERIA

Question Assessment criteria Response option scale

QA1 Where was the research published? Journal = 4

Conference = 3

Book = 2

Workshop =1

QA2 Did the publication provide clearly

stated findings with credible results

and justified conclusions?

Excellent = 3

Good = 2

Fair = 1

Poor = 0

QA3 Did the publication provide a valuable

contribution to the review, in terms of

the relevance of discussing ATD?

Excellent = 3

Good = 2

Fair = 1

Poor = 0

The scale of QA1 refers to a well-established standard where the Journals are ranked as

having the highest reliability, followed by Conferences, Books, and Workshops. QA3

involves comparable requirements, which were previously referred to as exclusion

criteria, but this examination focuses on scaling the content of the remaining publications.

The quality assessment scores are heuristic only; to be used as a guide where no

publication is rejected on the basis of the quality assessment output.

9.3.6. Data collection and Data synthesis

Data were collected according to the form in Table III, including predefined Data

Collection Variables. This enabled the recording and tracking of the full details of each

surveyed publication. The predefined Data Collection Variables [DC7] to [DC12] are, as

a result, based on a synthesis step in order to refine the classification of the research

questions. These variables were iteratively created by examining the full text of the

retrieved publications.

www.manaraa.com

61

TABLE III - DATA COLLECTION VARIABLES AND THEIR PURPOSE

Variable Collected Information Purpose

[DC1] Author

Demographic

characterization

[DC2] Title

[DC3] Year

[DC4] Venue

[DC5] Quality assessment score Data assessment

[DC6] Impact of ATD RQ1

[DC7] Categories of ATD RQ2.1

[DC8] Quality attributes/negative effects RQ2.2

[DC9] Refactoring Strategies RQ2.3

[DC10] Architectural TDM activities RQ3.1

[DC11] Challenges RQ3.2

[DC12] Analysis method RQ3.3

The first data collection variables [DC1] – [DC4] are primarily due to the demographic

characterization of the study. Variable [DC5] reveals and synthesizes the quality of the

publications, and this score is used when selecting information from the sources as well

as when resolving conflicts among contrasting statements in the data. Variable [DC6]

reports the impact and importance that ATD has on the software development, in order to

address RQ1. The stated ATD categories in the research presented by variable [DC7]

provide information when processing RQ2.1; equally, [DC8] reports the quality attributes

and possible adverse effects when answering RQ2.2. To scrutinize different refactoring

strategies mentioned in the research, the variable [DC9] is added to the data collection.

Finally, to answer RQ3 and its sub-queries RQ3.1, RQ3.2 and RQ3.3, variables [DC10],

[DC11] and [DC12] with a focus on the different types of the abovementioned ATDM

activities together with various challenges and monitoring/detecting methods are

provided.

9.3.7. Data analysis

Kitchenham et al. [108] recommend the use of graphical examination of data and

exploratory data analysis. For such a purpose, the software tool Atlas.ti is used for

qualitative data analysis allowing the coding and visualization of qualitative information.

Figure 1 shows the outcome of the analysis process, described below.

www.manaraa.com

62

Figure 1. The outcome of the analysis process

First, as reported in the data collection Section (III-F), the RQs generated DC variables

(DC6-DC12 in Table III), which were used as an inductive coding scheme for the high-

level categorization of the data (second level of codes in Figure 1). Following this, the

data were inductively analyzed identifying several aspects, visible as the bottom-level

boxes in Figure 1. In order to explain how this critical coding step was conducted, an

example of a quotation from a paper mapped to a novel aspect and therefore to an RQ is

reported.

The quote from Mo et al. [109] “Not being able to detect or address architectural decay

in time incurs architecture debt that may result in a higher penalty” was coded as Time

Perspective, which is part of the challenges related to ATD management (RQ3.2).

During the analysis, we were explicitly observing cause and effect relations between the

revealed aspects, which were introduced as relationships between the aspects. The

complete result of this process is the Unified Model in Figure 5, where all the aspects and

their relationships are shown in a comprehensive manner.

9.4. Results from the retrieval of publications

The presentation of the results in this section will focus on the overall results concerning

the retrieval of the primary publications.

To screen out the most interesting and relevant publications for this review, a filtering

technique based on five different stages has been used. Fig. 2 shows the filtering stages

included in the searching process and the returned number of publications identified after

each filtering stage. To increase the coverage, we searched for relevant publications by

conducting both a systematic search of available research publication databases and by

using a “snowballing” technique.

www.manaraa.com

63

Figure 2. Stages included in the selection process (counts indicate included papers after each

stage).

In the first stage, all publications (n = 166) from the different data sources were retrieved

and merged. The publications were entered into the EndNote (version 7.7) software tool

for managing papers, citations, and references, in a structured manner. Endnote facilitated

the second stage of finding and removing duplicates, which resulted in a reduced number

of publications (n = 79). Stage three was applied after the full texts were retrieved, and

each publication was checked using the inclusion and exclusion criteria in Table I. As a

result of this action, another 41 publications were excluded, which returned 38

publications. This set of publications retrieved from research databases was then used as

input in stages four and five when applying the snowballing technique.

When applying the backward snowballing method, the reference list in each publication

was examined. In total, 812 publications were referenced in the 38 selected publications

(although some of the publications were duplicates).

When applying the forward snowballing method, publications citing the 38 selected

publications were studied. In total, seven more papers were selected after applying

forward- and backward snowballing of the references of the 38 selected publications.

From those seven additional publications, three publications were excluded after applying

the inclusion and exclusion criteria, which returned 42 publications for a detailed quality

assessment.

In the sixth stage, the publications went through an assessment process, with the idea of

assessing the quality of all publications. This process did not reduce the number of

publications further; this stage predominately serves as a ranking of the publications. The

overall output of the first six stages returned 42 publications for data analysis. During the

seventh stage, data were extracted from each of the 42 primary publications included in

this SLR, according to the predefined data collection forms, in Table III.

According to Kitchenham [80], a synthesis of the SLR procedure should include a

descriptive synthesis and also possibly a quantitative summary (meta-analysis). Below,

Table IV, Figure 3 and Figure 4 present the extracted information and statistics regarding

the retrieved publications.

The selected venues and publication types are listed in Table IV. The examination of the

selected primary publications showed that the most predominant type is conference

papers (45%), followed by workshop papers (36%), and six (14%) publications were

published in journals. Two chapters from two books were included.

www.manaraa.com

64

TABLE IV - SELECTED VENUES

Venue

ID

Publication

Type

Journal: Information and Software Technology INFSOF [110] Journal

Journal: IEEE Software IEEE [111],[112] Journal

Journal: IEEE Software IEEE [18] Journal

Journal: The Journal of Systems and Software JSS [113] Journal

Journal: Management Science MS [114] Journal

International Conference on Dependable Systems

and Networks DSN [115] Conf.

Joint Meeting on Foundations of Software

Engineering
ESEC/FS

E
[16] Conf.

Proceedings of the Annual Hawaii International

Conference on System Sciences HICSS [24] Conf.

International Conference on Software Engineering ICSE [116] Conf.

International Conference on Software Engineering ICSE [54],[117] Conf.

International Conference on Software

Maintenance ICSM [118] Conf.

International Conference on Quality of Software

Architectures QoSA [119] Conf.

International Conference on Quality of Software

Architectures QoSA [26] Conf.

International Conference on Quality of Software

Architectures QoSA [120] Conf.

International Conference on Quality Software QSIC [28] Conf.

www.manaraa.com

65

Venue

ID

Publication

Type

Euromicro Conference Series on Software

Engineering and Advanced Applications SEAA [93] Conf.

Software Engineering and Advanced

Applications, Euromicro Conference SEAA [121] Conf.

Software Engineering and Advanced

Applications, Euromicro Conference SEAA [122] Conf.

Conference on Software Architecture and

European Conference on Software Architecture
WICSA-

ECSA
[97] Conf.

International Conference on Software

Architecture WICSA [103],[23],[12

3]
Conf.

International Conference on Systems, Man, and

Cybernetics SMC [124] Conf.

International Workshop on Managing Technical

Debt MTD [125] Ws.

International Workshop on Managing Technical

Debt MTD [126], Ws.

International Workshop on Managing Technical

Debt MTD [25] Ws.

International Workshop on Managing Technical

Debt MTD [109] Ws.

International Workshop on Managing Technical

Debt MTD [17] Ws.

International Workshop on Managing Technical

Debt MTD [127] Ws.

International Workshop on Managing Technical

Debt MTD [128],[129],[1

30]
Ws.

International Workshop on Software Architecture

and Metrics SAM [131],[132],[1

31], [27]
Ws.

International Workshop on Technical Debt

Analytics TDA [133] Ws.

Economics-Driven Software Architecture
[22] Book

www.manaraa.com

66

Venue

ID

Publication

Type

Software Quality Assurance
[96] Book

Fig. 3 shows the number of publications per venue included in the review. The graph

reveals that the most prominent venue is the Managing Technical Debt Workshop (MTD,

with nine publications) followed by the Conference on Software Architecture and

European Conference on Software Architecture (WICSA/ECSA), with four publications.

Fig. 4 shows the distribution of the publications from 2005 to 2016. This figure shows an

apparent increasing trend for publications in the field. For instance, between 2014 and

2015, the amount of publications more than doubled.

Figure 3. Numbers of publications per venue

www.manaraa.com

67

Figure 4. Publications per year

9.5. Results

In this section, we present the results of the data analysis of the reviewed publications,

with respect to the investigated research questions RQ1-3. This section provides a more

detailed analysis and review of the selected 43 publications.

9.5.1. What is the importance of ATD in software development? (RQ1)

This research question seeks to address the relevance and importance of ATD in software

development. These days, ATD is considered to be central to software development, and

ATD has a significant negative impact on software products and on software development

projects. Left unchecked, ATD can cause expensive repercussions. It is therefore

important to understand the basic underlying factors of ATD.

ATD is an important component that needs to be addressed in the architecting process

[96], [117],[133],[131],[16], [128],[28],[22],[113],[119] in order to make sure that the

advantages of sub-optimal solutions do not lead to the payment of significant interest

[127]. [131] highlights that architectural decisions concerning different conflicting

quality attributes often become major sources of significant TD and are an expensive form

of architectural breakage to rectify. Furthermore, Izurieta et al. [120] describe that, for

practitioners adopting model-driven techniques, the management of TD also requires

addressing this problem during the specification and architectural phases. In our previous

paper [93], we pointed out the risks when ATD grows until the negative effect makes

adding new business value so slow that it becomes necessary to conduct widespread

refactoring or even rebuilding the software from scratch.

Several of the reviewed publications highlight the importance of addressing the

architectural aspects of TD since it has such leverage within the overall development

lifecycle and its strategic management [28], [109]. Furthermore, the reviewed

publications state that the most commonly encountered instances of TD are caused by

www.manaraa.com

68

architectural inadequacies [17] and that architectural decisions are the most important

source of TD [16]. [18] echo the notion, stating, “Architecture plays a significant role in

the development of large systems, together with other development activities, such as

documentation and testing (which are often lacking). These activities can add

significantly to the debt and thus are part of the technical debt landscape”.

9.5.2. Existing knowledge about ATD regarding debt, interest, and

principal (RQ2)

RQ2 investigates how existing knowledge defines debt, interest, and principal, which are

respectively represented by the three following aspects: (1) categories of ATD, (2) the

negative effects caused by ATD, and (3) strategies for refactoring ATD.

9.5.2.1. Categories of ATD (RQ 2.1)

Architectural choices and design decisions have a great impact on the amount of ATD

[134], [115], and can be incurred by either explicit or implicit architecture decisions [22]

and be made either consciously or unconsciously [26]. These decisions affect several

different categories of debt, and one of the main categories of ATD is architectural

dependencies [23], [126] including module dependencies, external dependencies, and

external team dependencies [16]. Another category of ATD involves non-uniformity of

patterns and policies where, for example, a violation of naming conventions and non-

uniform design or architectural patterns are implemented [23]. Some authors add code-

related issues as ATD variables, where code duplication [23] and overly complex code

[25],[132],[118] are additional reasons for the emergence of ATD. Furthermore, non-

uniform management of integration with subsystems and resources [23] and different

architectural decay instances [109] are also revealed as ATD categories. The lack of

implementation or test of Quality Attributes (QA) or non-functional requirements are

shown by [23] as a classification of ATD, and [131] illustrates the problems with

conflicting QA synergies as an important source of ATD.

9.5.2.2. Negative effects caused by ATD (RQ 2.2)

Fernández-Sánchez et al. [24] acknowledge that “interest is the recurring cost of not

eliminating a technical debt item over some period of time” with the result of the negative

effects and adverse impact on QAs. There is wide agreement in academic literature that

some of the negative consequences of ATD can be linked to the effect it has on

maintenance complications and penalties, and in stifling the organization’s ability to

introduce new features: “Not being able to detect or address architectural decay in time

incurs architecture debt that may result in a higher penalty in terms of quality and

maintainability (interest) over time” [109]. Li et al., [103] mention, in particular, the QA’s

maintainability and evolvability, as immature architecture design artifacts. Similar results

from research by Xiao et al. [117] show that a significant portion of the overall

maintenance effort is consumed by paying interest on ATD. Moreover, Avgeriou et al.

www.manaraa.com

69

[111] draw on the work of Martini et al. [110] who identify a relationship between

architectural shortcuts and potentially higher evolution and maintenance costs.

A system suffering from architectural drift or erosion will eventually develop some decay

instances that negatively impact the system’s lifecycle properties, such as

understandability, testability, extensibility, reusability [109] and reliability [114].

[112] reveals that architectural compromises often occur when architectural constructs

are implemented too late, causing the solution to accumulate TD and making it

increasingly difficult to add features in an evolutionary manner. Naturally, the time

dimension is crucial to achieving the right amount of anticipation.

On the other hand, to proactively assume that changes will happen and design for

flexibility in advance often entails high costs and risk [24]. Although the large majority

of the surveyed publications only highlight the negative consequences of ATD, we find

four publications explicitly mention a positive impact in terms of strategic benefits to an

enterprise when deliberately taking on ATD, in terms of shorter time to market [22],

[125], [18], [111].

9.5.2.3. Refactoring strategies for managing ATD (RQ 2.3)

Decisions of if and when to refactor architecture are extremely important and difficult to

take, since changing software at the architectural level is somewhat expensive [54]. The

concept of different refactoring strategies refers to how (i.e. if one refactoring process

must be performed before another [119]) and whether to repay the debt and finally how

to identify candidates for refactoring.

A refactoring strategy typically involves decisions regarding continuing paying interest

or by paying the principal by re-architecting and refactoring to reduce future interest

payments [17],[122]. In our previous paper, by Martini and Bosch [110], a description of

a strategy with respect to minimizing risk for a development crisis is recommended:

“Partial refactoring is the best option for the maximization of refactoring. Thorough

refactoring is not realistic. Drastic minimization of refactorings (No refactoring) often

leads to development crises in the long run.” Based on economic considerations, it could

be more profitable to delay the refactoring, i.e. continue paying interest, than to invest in

refactoring to manage the debt and, furthermore, the team’s capacity to perform the

refactoring should be considered [24]. Several authors mention this decision-making as

the main refactoring strategy and [121] reveal important aspects during this prioritization

regarding lead time, maintenance costs, and risks. The refactoring decision-making is

enclosed by the problem that costs are concrete and immediate whereas the benefits of

refactoring are vague and long-term, and the benefits of refactoring have historically been

difficult for architects to quantify or justify [116]. [113] state that “While a software

architect might intuitively recognize the potential benefits of architectural change, senior

managers typically require a robust assessment of the financial consequences of change,

before funding such efforts.” Furthermore, [113] address the questions if and when it

might be appropriate to perform refactoring. They highlight the lack of robust data by

which to evaluate the relationship between architectural design choices and system

maintenance costs, to predict the benefits that might be released through refactoring

www.manaraa.com

70

efforts. By analyzing the relationship between system architecture and maintenance costs,

they show that measures of coupling are a strong predictor of subsequent file

maintenance.

Martini et al. [122] describe that, even if the achieving modularity is an expensive

operation, the cost of modularization by refactoring of the software architecture could be

repaid in several months of development and maintenance. When identifying candidates

for the architectural refactoring in order to minimize the refactoring effort, Choudhary

and Singh [133] use a refactoring strategy focusing on locating the architecturally relevant

classes as they are considered to be the pillar classes of the software design. Their strategy

is based on a combination of finding classes that have earlier been frequently refactored

together with looking for classes which are harmful to the system’s architectural design.

The classes are then prioritized and ordered according to their impact on the overall

system’s quality. When prioritizing among different possible architectural refactoring

issues, Martini et al., [54] address the importance of also taking into consideration the

available resources in relation to feature development by addressing if and when

refactoring should be performed. Martini and Bosch [54], citing Carriere et al. [53]

conclude that doing architectural refactoring is risky, difficult to estimate, and difficult to

prioritize.

9.5.3. Existing challenges and solutions in managing ATD (RQ3)

RQ3 is separated into three top-level precedents, examining ATDM activities, related

challenges, and analysis methods for detecting or evaluating ATD.

9.5.3.1. Architectural TDM activities (RQ 3.1)

Nord et al. [97] describe the importance of this process as “Development decisions,

especially architectural ones, require active management and continuous quantitative

analysis, as they incur implementation and rework cost to produce value“. To fully

manage and control a complete ATDM process, Li et al. [22] advocate five different

activities: identification, measurement, prioritization, repayment, and monitoring.

However, while the concept of ATDM as an overall process is uncommonly described in

the academic literature, several authors mention or focus on individual activities within

an overarching process of ATDM.

The initial activity within the ATDM process is to identify current ATD items within the

software system [22], where this activity is crucial for a forthcoming successful

management process. The following ATD measurement activity examines and estimates

the costs and benefits, including the prediction of change scenarios influencing ATD

items for interest [22]. The output of this activity is used as an input to the prioritization

activity, since prioritizing refactoring ATD items is an essential element when balancing

the short-term value delivery and the long-term responsiveness where lead time,

maintenance costs and risk are the variables that most influence the ATD

effects[135]Eliasson et al. [127] describe how graphically visualizing the prioritization

and evaluation of ATD could increase the awareness of the impact that ATD had on

efficiency. The repayment activities involve refactoring and can either be partially or fully

www.manaraa.com

71

resolved by making new, or modifying existing, architecture decisions [22] to reduce or

mitigate the undesirable effects of ATD. The monitoring activity tracks ATD changes

explicitly and consequently keeps all the ATD items of the system under control [22].

This activity is a complex process that endures over time, and [97] enforces that the

repayment and the monitoring activities are a quite uncommon practice where existing

techniques are lacking.

9.5.3.2. Challenges with ATD (RQ 3.2)

To obtain a rich picture and to reveal issues and risks early [27], it is of vital importance

to understand the background of ATD problems. This highlights the need to understand

the challenges in fully managing ATD in a more conscious and informed way. Mo et al.

[109], among others, discuss the challenges and put the issue of time into perspective in

ATD. Ernst et al. [16] explain that architectural decisions take many years to evolve and

are commonly made early in the software lifecycle and it is often invisible until very late

in the lifecycle [28]. Yet another time-related perspective to ATD is offered by [124].

They have studied software installed in automated production systems and describe the

challenges with software that is installed at a customer site for the first time, which leads

to decisions under time pressure since these software projects commonly face heavy

penalties in case of failure. This time pressure could lead to neglecting architectural

concepts. Xiao et al. [117] advocate that projects could save a significant amount of

maintenance costs if they can discover ATD early, and pay them down by refactoring.

From a more technical perspective, critical issues relating to challenges of the detection

of architectural issues through standard testing [25], [18] and ATD seldom yield

observable behaviors to end users [26], whereas a higher number of dependencies

decreases the comprehensibility of the system [120]. Eliasson et al. [127] describe that

inconsistency between different levels of abstraction in the architectural design is difficult

to detect and is an important source of ATD. They also highlight that the interest is hidden

from the stakeholders, which make it difficult when deciding if a refactoring of an

architectural issue should, or should not, be refactored.

Yet another purported emergence of ATD is associated with architectural decision-

making, where the decisions cross every possible communication link across the

development and operations network, and loss of essential information is practically

inevitable [123].

9.5.3.3. Analysis method for detecting or evaluating (RQ 3.3)

Using an analysis method may facilitate the evaluation and decision-making process,

helping in the prioritization of resources and efforts concerning refactoring strategies. The

need for supporting tools for system monitoring and evaluating ATD using accurate

metrics is a key issue and is not fully supported by any currently available tools [16], [23],

[130],[129], [111].

The main goal of a continuous and iterative system monitoring of ATD is to capture and

track the presence of ATD within a system [23], to provide early warnings to detect costs

www.manaraa.com

72

and risks [97] and to map architectural dependencies or pattern drift to decay [16].

Moreover, Ozkaya et al. [27] state that most available metrics are at the code level and

Reimanis et al., [130] conclude that currently available TD tools only focus on the

structural aspects of the system instead of also including the behavioral aspects, while

Nord et al. [97] describe that the existing metrics for system quality visibility are

insufficient and unproven.

Fontana et al. [128] have analyzed different available TD Index tools to understand which

tools take the architectural issues more into account. They found that even if there are

some available tools addressing architecture-related issues, most of them do not provide

indexes that are directly useful when evaluating single projects. Fontana et al. conclude

that the outcome measures from the tools could not be interpreted with the aim of

understanding the overall quality of the analyzed project on a global scale [128].

9.6. Importance of ATD and a need for a Unified Model

There is wide agreement in the reviewed academic literature that ATD is of primary

importance. However, it is observed from the result that ATD is described in a scattered

and inconsistent way. Consequently, we conclude that to derive more value from the

results concerning ATD and its effects, a holistic model depicting different views and

their implications at hand is required. Therefore, we propose a novel descriptive model

that provides an overall understanding of existing knowledge in the research area of ATD

with the aim of providing a comprehensive interpretation of the ATD phenomenon.

To interpret the SLR outcomes for practice, and to be of use to practitioners, we have

developed a model for translating the results to an organization’s needs for understanding

ATD [136]. The model in Fig. 5 graphically illustrates and synthesizes the findings and

their causal relationships. The structure of the model is inspired by Nickerson et al. [137]

who recommended that a taxonomy of a model includes the criteria of conciseness,

inclusiveness, comprehensiveness, and extendibility, Here, the conciseness refers to the

fact that our model contains a limited number of dimensions and characteristics in order

to be easy to comprehend and apply. The inclusiveness refers to the fact that the model

includes a sufficient amount of information to illustrate a summarizing view of the

research state of the art on the architectural aspect of TD from a holistic perspective. The

comprehensiveness refers to the fact that the model provides an overview of all identified

aspects. Finally, the model is extendable in terms of the fact that the model allows for

additional aspects and relationships to be added.

The model also clarifies the different aspects of each research question and assembles

relationships between them. As an aid to obtaining levels of observation, the model is

divided into the vertical groups of ATD Identification Checklist, ATD Impediments, and

ATD Management, and the horizontal cross-sections corresponding to Focus area,

Research question, and Aspects. Each aspect of the model is derived from results obtained

from research questions RQ2 and RQ3 and is illustrated in the horizontal cross-sections

named RQ.

Within every aspect in Fig.5, there is a box with a number indicating how many papers

fit into each aspect. This information highlights the popularity of each categorization and

www.manaraa.com

73

contributes to the reader’s knowledge base with useful and important information when

creating a platform for understanding ATD. The references for each aspect are presented

in Table V and also reported in the results, Section IV.

The model’s scaffolding allows practitioners to more easily leverage this study's outcome

when analyzing the results derived from the RQs. The model’s relationships are based on

the systematic analysis of all surveyed publications, in which we have interpreted the

result as the unified model illustrated by different types of arrow. Only the relationships

that are clearly stated and described within the retrieved publication are illustrated in the

model. This implies that we cannot exclude that there are other relationships between the

aspects. The identified relationships between the aspects are illustrated by different

colored arrows. The prospect of being able to identify more relationships among the

different aspects serves as a continuous incentive for future research. The model

highlights that Maintainance and Evolvability are vital challenges within ATD, due to the

fact that all of the ATD challenges (green dotted arrows) are related to this negative effect,

and furthermore, all of the ATD categories have an effect on Complexity (orange dashed

arrows).

Figure 5. The Unified Model of ATD

9.7. Discussion

This section discusses the findings and the implications for practitioners and academia.

The results from the SLR indicate that there is an absence of a comprehensive descriptive

model of ATD in the academic literature. For the academic and practitioner community,

this descriptive model can support the process of more informed management of the

software development lifecycle, with the goal of raising the system’s success rate and

lowering the rate of negative consequences.

www.manaraa.com

74

The remainder of this section presents and discusses the answers to the research questions

presented in Section III-A, using the grouping described in Fig. 5 and, as the final section,

the novel Unified Model is discussed.

TABLE V - REFERENCES FOR EACH ASPECT

Aspect Reference

Frequency of encounterings [17], [117]

Level of importance [131],[16],[128],[28],[18],[22],[96],[113],[119]

Impact on Overall software Lifecycle [133],[127],[120],[93],[109]

Dependency violations [115],[126],[127],[16],[120],[116],[103],[96],[26],[1

13],

[23], [121],[93],[110],[97],[109],[123],[117]

Non-Uniformity of patterns and policies [24],[132],[120],[22],[26],[93],[124]

Code issue [111],[25],[132],[23],[121],[97],[124]

Inter-dependent resources [131],[23],[110],[114],[109],[124]

Lack of mechanisms for addressing

Non-Functional Requirements

[131],[127],[96],[23],[124]

Detection [111],[126],[127],[132],[18],[103],[96],[26],[118],[1

09],

[124],[117]

Time perspective [103],[96],[23],[93],[110],[97],[112],[124],[117]

Complexity [115],[126],[132],[28],[26],[27]

Flexibility [131],[24],[109]

Maintenance and evolvability [111], [127],[132],[18],[22],[103],[96],[26],[118],

[113],[23],[93],[110],[112],[117]

Innovation and system growth [18],[113],[93],[110]

Performance degradations [25],[127]

Reliability [131],[25],[114],[109]

ATDM Process [22],[103],[96]

Measuring [16],[132],[120],[116],[22],[96],[110],[130],[117]

Tracking [16],[116],[22],[103],[96],[23],[110],[117]

Evaluating [127],[16],[128],[116],[22],[110],[130]

www.manaraa.com

75

Extent none/partial/full) [113],[23],[93],[110]

Timing [132],[23],[54],[121],[93],[110],[122],[97],[117]

Resources [116],[54],[110],[124],

Cost-Benefit analysis [116],[113],[54],[121],[93],[110],[122],[97],[119]

9.7.1. Importance of ATD (RQ1)

The first research question set out to review how the importance of ATD is described in

the retrieved publications. The results of this study show that ATD is of very high

importance to software companies and that ATD has a negative impact during the overall

software lifecycle. Some publications also stated that, among the different types of TD,

ATD is the most commonly encountered type of TD. Since ATD has such leverage within

software development and that it is of primary importance to pay attention to it, we

conclude that ATD needs further attention from both academia and industry.

9.7.2. ATD identification checklist (RQ2.1)

The research question RQ2.1 is addressed with an ATD identification checklist, in the

form of a unified model (Fig.5). The current description in the literature of ATD is

inconsistent and creates confusion both for practitioners and within academia. Therefore,

we provide a comprehensive checklist of all aspects of ATD, reported in the literature.

Researchers and practitioners can use this checklist as a universal reference for

recognizing ATD. ATD can be categorized into different categories of debt (RQ2.1), such

as: dependency violation, code related issues, non-uniform usage of architectural policies,

the lack of handling interdependent resources, and lack of addressing non-functional

requirements.

9.7.3. ATD impediments (RQ3.2 and RQ2.2)

In Fig. 5, we present all the ATD Impediments – both the challenges related to ATD and

their associated negative effects. Researchers and practitioners can use this picture to

evaluate and understand what problems might occur when dealing with ATD and the

consequences of these challenges are left unattended. Major challenges (RQ3.2) include

difficulties in ATD detection, challenges related to the time perspective, and

unmanageable architectural complexity. Frequently, the mentioned complexity is related

to code level (McCabe’s cyclomatic complexity) but this metric is not related to

architectural aspects of complexity, and, therefore, we stress the need for further focus on

this specific aspect.

These overall challenges can lead to severe and costly maintenance overheads that, in the

long run, can diminish the organization’s ability to innovate and evolve. ATD can also

result in restricted flexibility, decreased reliability and performance degradation (RQ2.2).

Our findings show that challenges and effects are currently presented in a scattered way

www.manaraa.com

76

in the literature, and, therefore, we provide a comprehensive presentation of ATD-related

challenges and effects in Fig. 5.

9.7.4. ATD management (RQ3.1, RQ3.3, and RQ2.3)

Although the current literature stresses the importance of understanding ATD and its

related consequences, we report a lack of guidelines on how to manage ATD successfully

in practice.

We confirm that the generic activities recognized by Li et al. [22] apply to ATD

management. However, we report a lack of an overall process where these activities are

fully integrated. At the moment, they are generally reported as single isolated activities.

Two book chapters mention these activities within an overall process, but there is a need

for further and stronger empirical evidence supporting a suitable and practical solution

(RQ3.1).

The findings show that there is a compelling need for supporting tools and methods for

system monitoring and evaluating ATD, but also show that no software tools covering

the full spectrum of ATD are yet available (RQ3.3). For example, Li et al. [22] propose

an ATD identification method, but it is not clear to us how this method could be integrated

with other methods and tools.

A refactoring strategy for paying the principal must be developed and implemented to

successfully manage ATD and not allow it to grow unimpeded. Practitioners do, in

general, lack strategies for architectural refactoring, and, therefore, such an activity might

result in an ad-hoc process where the results are inadequate. In this paper, we provide the

key dimensions that need to be taken into consideration when defining such a refactoring

strategy. Fig. 5 includes these dimensions and can assist practitioners and researchers

when creating and studying refactoring strategies. A strategy needs to be flexible to adapt

to changing requirements and take into account resource constraints and forthcoming new

features. An important aspect to consider while setting up a strategy is the amount of

refactoring that should take place. If refactoring is overlooked, it can lead to a

development crisis in the long run, and there are benefits of performing a partial

refactoring (RQ2.3).

9.7.5. The Unified model for ATD

As discussed in the previous section, we found that the information about ATD is

currently dispersed across different publications and is sometimes inconsistent. It is

therefore difficult for researchers and practitioners to obtain a clear overview of ATD.

This study provides a novel and comprehensive model that includes all the important

aspects of the ATD phenomenon and their relationships (Fig. 5). The model will help

academics and practitioners in interpreting ATD, recognizing its issues, and

understanding how to manage it. Having such a visual model in which stakeholders can

rapidly obtain a holistic overview is of immense value.

The model presents different aspects of ATD and their relationships: this helps the

practitioners in understanding how the aspects impact each other and assists the

www.manaraa.com

77

researchers in studying the connecting aspects together. For example, the orange dashed

arrows in the model show that all revealed categories of ATD have a relation to the aspect

of Complexity, meaning that all instances of ATD increase the needed effort for software

and system engineers to understand and manage the systems’ interfaces and

interconnections.

The green dotted arrows in the model show that all the Challenges of ATD have effects

on system Maintenance and Evolvability, meaning that every ATD item will have a

negative impact on Maintenance and Evolvability.

9.7.6. Research agenda for ATD

This research agenda provides clear targets for future research within the ATD field and

concludes that future research roadmaps should focus on:

• The indication of how many papers fit each aspect in the unified model of ATD

clearly shows which areas are covered by research and what aspects need more

investigation.

• The findings show that there is a compelling need for supporting tools and

methods for system monitoring and evaluating ATD. There is also a need for

more studies concerning efficient refactoring strategies, taking different aspects

into consideration.

• The results of this study also underline the lack of guidelines on how to manage

ATD successfully in practice, which needs to be addressed in future research.

Very few publications stress the importance that organizations need to deliberate reverse

TD and remediate their software solutions to avoid facing expensive repercussions in the

future.

9.7.7. Threats to validity

The result of this SLR may be affected by some threats to validity, such as:

9.7.7.1. Incompleteness of study search and obtaining accurate data bias

In a literature review, it is important to mitigate a potential bias of the poor quality of

publications, which can lead to inaccurate conclusions [138]. Therefore, the included

publications were published in journals, conference proceedings, or workshop

proceedings according to a peer review process. Some book chapters were also included

in order to include all relevant publications about ATDM.

In order to mitigate the risk of not retrieving relevant publications, which could negatively

affect the completeness of the study, we searched the most common electronic databases

in which a large number of journals and conference and workshop proceedings, along

with book chapters in the software engineering field, are indexed. In addition to this, we

employed both a backward and a forward snowballing technique to include additional

www.manaraa.com

78

potential studies in the references of the selected studies retrieved from the database

searches.

9.7.7.2. Number of retrieved publications

A relatively limited number of publications were retrieved, with the logical consequence

that the results of this review had limited publications from which to derive results. This

result could potentially have introduced subjective conclusions into the analysis or

incorrect or missing relationships into the results.

9.7.7.3. Search string

During the search process, publications that did not include either of the search terms

“technical debt” and architec* in the title or abstract of the publication were excluded

from the review. This could imply that some publications could have been incorrectly

excluded. We reason, nevertheless, that if a publication primarily focuses on the

architectural aspects of TD, the word architec* should be explicitly mentioned. However,

we are aware of the fact that there are related terms that, in many respects, resemble the

architectural aspects of TD.

9.7.7.4. Data extraction

To reduce the risk of subjectivity during the classification and extraction phase,

performed by only one researcher, several publications were examined by at least two

researchers to ensure that the returned publications were suitable and equivalently

analyzed.

9.7.7.5. The unified model of ATD

In the Unified Model of ATD in Fig.5, other aspects, relationships, and associated impacts

may exist but are omitted in this model, since they were not explicitly revealed in the

review process and thus have not been further analyzed.

9.8. Related work

Architecture plays a significant role in the development of large software systems yet, to

the best of our knowledge, despite the fact that ATD is commonly recognized as a major

dimension of TD [7], and except for our previous paper [101], there are no other literature

reviews summarizing the research state of the art with a specific focus on the architectural

aspect of TD, from a holistic perspective.

By studying the types of available literature review, six reviews (written in English) were

found within the shared research area of this study. These studies differ, however, in the

research questions, method, searching interval, and primary focus, and the studies have

different research goals. The most recent study was a systematic mapping review

performed by [138] focusing on the elements required to manage TD. This paper is an

www.manaraa.com

79

extension of [139], and the paper reviews techniques and methods for TD management

from an architectural perspective, using a systematic mapping method. Their study

addresses code debt, environmental debt, knowledge distribution and documentation

debt, and testing debt and with a specific focus on design and architectural debt. The

different TD types are studied from three different perspectives: core elements,

implementation elements, and management elements. Their analysis shows that further

studies addressing architectural debt using a holistic approach are needed. The

perspective in our study is different from that study, since we are specifically interested

in the architectural aspects of TD and the activities used in performing architectural TD

management.

Another study was a systematic mapping review performed by Alves et al. [42], focusing,

among other aspects, on different TD types and useful indicators for detecting TD. This

study focuses on TD in general, in comparison to our study, which focuses on the

architectural aspects of TD. Another significant related work in this research area is

conducted by Ampatzoglou et al. [30] based on a comprehensive, systematic literature

review with a primary focus on the financial aspects of managing TD. This review also

comprises a formation of a glossary of terms and a classification of financial approaches

in TD management. Li et al. [15] recently published a mapping study (MS) with the

primary focus on making a classification and thematic analysis on collected studies within

the TD management area. This study focuses on managing activities, approaches, and

tools on TD in general and not especially on the architectural aspects of it. In comparison

to our study, this study does not include any ATD impediments in terms of challenges or

negative effects. Finally, in 2013, Tom et al. [7] published a multivocal literature review

(MLR) with a focus on the nature of TD and its implications for software development.

This study focuses on TD in general in terms of different dimensions of TD, how TD

arises, and the benefits and drawbacks of allowing TD to accrue.

However, even if one of the most commonly encountered instances of TD is caused by

architectural inadequacies, no previous study has specifically addressed this aspect of TD

using a holistic approach focusing on categorizations, impediments, management

activities, methods, and refactoring strategies.

Even if some of the abovementioned publications refer to the architectural aspects of TD,

none of them have a specific and dedicated focus on solely the architectural aspects of

TD and thus our study is different from these previous studies, since we are specifically

interested in the architectural aspect of TD. Our study also provides a unified model

which offers a dedicated focus on ATD. The aim of this study is, therefore, to synthesize

and compile research efforts with the goal of creating new knowledge with a specific

interest in the ATD field, which contributes to both academia and practitioners in terms

of the unified model of ATD.

9.9. Conclusions

From a software lifecycle perspective, it is of vital importance to understand and

proactively manage ATD. Left unchecked, ATD can potentially stifle the implementation

of new features, and organizations may face expensive repercussions due to costly

www.manaraa.com

80

architectural maintenance efforts. In order to synthesize and compile the current ‘state of

the art’ in the ATD field, we have conducted a systematic literature review focusing on

the research areas: ATD in terms of principal, interest, debt and related challenges and

solutions for managing ATD.

In this study, we have provided a new and comprehensive understanding and raised

awareness regarding the challenges that surround ATD and, finally, how ATD can be

successfully managed. The findings showed that there is a wide agreement in the

reviewed literature that ATD is of primary importance. ATD is, however, surrounded by

several challenges, and while numerous publications mention different isolated ATD

management activities, there is an absence of, and a need for, a thorough indicative

ATDM process for the practitioner and academic communities, covering all these

separate activities. Different ATD categories (as debt) can result in various negative

consequences (as interest), requesting effective refactoring strategies (as principal). A

refactoring strategy mainly refers to how to, and if, and to what extent, repaying the debt

should be formulated.

This research contributes to the knowledge that addresses a current gap in understanding,

where knowledge and research of ATD are non-unified and fragmented. One key

contribution of this paper is our novel model of ATD. This model summarizes our

findings and allows for the improved identification of ATD and associated negative

consequences and corresponding ATDM activities. The model illustrates ATD in a

unified and comprehensive way, by exploring different aspects and relationships which

are considered particularly valuable for managing and raising awareness about ATD.

The model reveals that all categories of ATD (as debt) are related to the challenge of

complexity and furthermore that all challenges are related to maintenance and

evolvability. This model can help several different stakeholders within the software

lifecycle process to be better and more informed in managing the software, with the goal

of raising the system’s success rate and lower the rate of negative consequences.

As future work, we plan to investigate this area further by means of expanding this review

to include additional closely related research publications. Moreover, we will continue

our research in the direction presented in our research agenda.

To further study the impact and the influence of the different aspects of the unified model

of ATD, we are currently conducting empirical research with the aim of finding which

aspects are the most hurtful during the software development lifecycle.

www.manaraa.com

81

10. Technical Debt from a Software Quality

Perspective

The aim of this chapter is threefold: to understand which quality issues have the most

negative impact on the software development lifecycle process, to determine the

association of these quality issues in relation to the age of the software, and relate each of

these quality issues to the impact of different TD types.

Software companies need to produce high-quality software and support continuous and

fast delivery of customer value both in the short and long term. However, this can be

hindered by compromised software quality attributes that have an important influence on

the overall software development lifecycle. This paper reports the results of six initial

group interviews within total 43 practitioners, an online web-survey provided quantitative

data from 258 participants and seven follow-up group interviews within total 32 industrial

software practitioners. First, this study shows that practitioners identified maintenance

difficulties, a limited ability to add new features, restricted reusability, and poor

reliability, and performance degradation issues as the quality issues having the most

negative effect on the software development lifecycle. Secondly, we found no evidence

for the generally held view that the Technical Debt increases with age of the software.

Thirdly, we show that Technical Debt affects not only productivity but also several other

quality attributes of the system.

10.1. Introduction

Technical debt (TD) is recognized as a critical issue in today’s software development

industry and is evidently detrimental to the software developing companies, and it is,

therefore, important to assess and estimate the negative consequences of Technical Debt

in terms of continuously paying interest.

Ward Cunningham [91] introduced the financial metaphor of Technical Debt (TD) to

describe to nontechnical product stakeholders the need for recognizing the potential long-

term and far-reaching negative effects of the immature code that is made during the

software lifecycle, where the debt has to be repaid with interests in the long term.

Interest refers to the negative effects of the extra effort that has to be paid due to the

accumulated amount of TD in the system, such as executing manual processes that

potentially could be automated or spending excessive effort on modifying unnecessarily

complex code, performance problems due to lower resource usage by inefficient code,

and similar costs [7].

This chapter has been published as:

Time to Pay Up - Technical Debt from a Software Quality Perspective

Terese Besker, Antonio Martini, and Jan Bosch

In Proceedings of the 20th Ibero American Conference on Software Engineering

(CibSE) @ ICSE17, 2017.

www.manaraa.com

82

Left unchecked, TD can result in unexpectedly large cost overruns, severe quality issues,

inability to add new features [50] and even result in reaching a crisis point when a huge,

costly refactoring or the replacement of the entire system needs to be undertaken [5]. The

negative effects of continuously paying interest during the software lifecycle are

burdensome and costly for software companies. Therefore, it is of vital importance to

understand and estimate the interest in order to proactively manage it in terms of

allocating time, resources and additional effort.

A basic understanding of the structure and the constituent elements of the interest can be

obtained by studying the interest from the perspective of “what kind of interest is to be

paid”, “which type of Technical Debt cause the interest,” and “when will the interest being

paid.”

Today, there exists little quantitative data and knowledge with a focus on the interest

payment of TD, in terms of compromised software quality attributes. To the best of our

knowledge, there is no research studying the interest from a quality perspective, focusing

on the software quality issues, causes of the interest, and the interest in relation to the age

of the software.

We, therefore, aim at answering the research questions (the results from RQ1, are used as

input in the next following research questions):

• RQ1. Which quality attributes are the most affected by TD and how frequent are

those encountered during the software lifecycle and are those issues explicitly

address within software companies?

• RQ2. What type of TD generates the most negative impact on the daily software

development work and what kind of interest is related to each TD type?

• RQ3. How does the age of the software system affect the interest?

• RQ4. Is there a relationship between the wasted time during the software lifecycle

and the frequencies of encountering compromised quality attributes?

The remainder of this paper is structured in seven sections, where the next section

introduces related work. In the third section, the research method is described. The fourth

section presents the results that are discussed in section five. Finally, in section six, threats

to validity are presented, and Section seven concludes the paper.

10.2. Related work

The research addressing the negative effects and impacts of TD is relatively well

represented within academia [101], but there are no academic research surveying

practitioners on the software quality issues in relation to different TD types, and the

amount and type of paying interest in relation to the age of the software.

10.2.1. Software Quality Attributes

It is evident that software having TD, can negatively affect several different quality

attributes and that the attributes can affect the software in different ways, and the level of

www.manaraa.com

83

impact can also change during the software lifecycle. Li et al.’s [15] systematic mapping

study shows that most examined studies argue that TD negatively affect the

maintainability and that other quality attributes are only mentioned in a handful of studies

each.

According to the result presented in section IV.A, this study will mainly focus on the five

quality attributes; performance efficiency, reliability, maintainability, reusability, and the

ability to add new features.

Performance efficiency refers to the responsiveness of an application [33] relative to the

amount of resources used under stated conditions. Reliability focuses on the degree to

which a system performs specified functions under specified conditions for a specified

period of time[140]. Maintainability states the degree of effectiveness and efficiency with

which a system can be modified by the intended maintainers. According to ISO/IEC’s

classification [140], Reusability is a sub-category of maintenance and refers to the degree

to which an asset can be used in more than one system, or in building other assets[140].

The ability to add new features to a system is somewhat expressed in ISO/IEC 25010

standard [141] as a part of maintainability stated as “modifications may include

corrections, improvements or adaptation of the software to changes in environment, and

in requirements and functional specifications”, however, in this study, we have

deliberately separated it from maintainability in order to get a more in-depth understand

and will further use the classification ability to add new features.

10.2.2. Prior research on TD related interest

Falessi et al. [104] argue that the interest is non-linear and has a probability of growing

exponentially rather than linearly. By analyzing source code, Nugroho et al. [142]

describe that the interest grows differently on a 10-year horizon, depending on a star

rating system of the software. Kazman et al. [116] have quantified the architectural

sources of TD within a study and states that this TD type incurs high maintenance

penalties. However, this study does not focus on the other type of negative effects in terms

of other quality issues. Although some research has been done on addressing the growth

of the interest, there is a lack of empirical investigations quantifying TD from a holistic

perspective (including all types of TD) and describing the interest, in terms of

compromised quality attributes, in more detail.

10.3. Methodology

This study is conducted using a combination of quantitative and qualitative research

methodologies and by using methodological, source and observer triangulation.

Methodological triangulation refers to the utilization of both qualitative and quantitative

methods for gathering data [89], source triangulation refers to using different sources of

data (both interviews and survey). Observer triangulation refers to using more than one

observer in the study and was performed during the analysis parts where all three

researchers discussed until an agreement was reached. Triangulation is important to

increase the precision of empirical research and thus to provide a broader picture.

www.manaraa.com

84

The research was conducted in three separate phases. The first phase consisted of start-

up group interviews with practitioners from companies with an extensive software

development. In the second phase of the study, a web-survey was constructed, distributed

and data was collected with the aim of assessing and quantifying how TD has a negative

effect on the quality issues identified in the first phase. In the third phase, follow-up group

interviews were conducted to evaluate the awareness of the relationship between TD and

compromised quality attributes and to assess the presence or absence of addressing these

quality issues within the companies’ software development strategy.

10.3.1. Survey

The web-survey was hosted by an online survey service called SurveyMonkey. The

survey was using a mix of open- and closed-ended question. The questions were a

combination of optional and mandatory nature. To avoid bias in the survey, the questions

were developed as neutral as possible, ordered in a way that one question did not influence

the response to the next question, and a clear, unbiased instruction was provided when

needed. The first draft of the survey was tested by four industrial practitioners and by two

Ph.D. candidates in order to evaluate the understanding of the questions and the usage of

common terms and expressions. The survey was made accessible between February and

March 2016, and a reminder was sent out after two weeks to those who had been

specifically invited. The survey was anonymous, and participation in the survey was

voluntary.

10.3.1.1. Data Collection

The survey invitation was mailed to seven companies/partners within our networks (all

located in Scandinavia, with an extensive range of software development), and invitations

were also published at software engineering related networks on LinkedIn. Across all

these collaborators, 312 respondents began the survey, and 258 respondents answered all

questions (a completion rate of 83%). This paper’s response rate will refer to the

participants who started and completed the survey.

The first part of the survey gathered descriptive statistics to summarize the backgrounds

of the respondents and their companies. This data is compiled and presented in Table 1.

The level of education of the respondents was quite high, with 58% having a Master

degree and 25% having a Bachelor degree. The most common size of the software

development team included 6-10 members (36 %), and most (32%) systems were on

average 5-10 years old from their initial design. Nevertheless, a significant number (35%)

of the respondents’ systems were more than ten years old.

The second part of the survey included questions based on the research questions

presented in Section 1. In this part of the survey, following survey questions were asked

(SQ):

• SQ1: Which of the following challenges generates the most negative impact on your

daily software development work? Please rank them from 1 to 11.

• SQ2. How much of the overall development time is wasted because of these issues?

www.manaraa.com

85

• SQ3. During the software life cycle, you might encounter some of the following

issues. How often do you experience them?

For the question SQ1, different categories and sub-categories of TD (Complex

Architectural Design, Requirement TD, Testing TD, Source Code TD, Documentation

TD, Too many different patterns and policies, Dependency violations, Infrastructure TD,

Lack of reusability in design, Dependencies to external resources/software,

Uneasy/Tensed social interactions between different stakeholders) provided by [15],[143]

were used as answering alternatives. To make sure that the respondents were considering

the correct type of TD issues, a short description of the types were used in accordance

with the related work i.e. Social Debt was described as “Uneasy/Tensed social

interactions between different stakeholders”.

In survey questions, SQ2, these same types of TD were referred to in order to ensure a

better construct validity of the survey. In SQ2, the estimation of the interest as wasted

time was indicated in predefined percentage intervals of <10%, 10-20%....80-90% and I

don’t know.

In SQ3, the respondents could indicate their frequency of experiencing the quality issues

on a 5-point Likert Scale (Very Frequently, Frequently, Occasionally, Rarely, and Never).

10.3.1.2. Data analysis

The data from the survey was analyzed in a quantitative fashion, by interpreting the

numbers obtained from the answers. To allow for ordinal comparison, a transforming

from Likert scale to numeric value have been used. The assigned ordinal values for the

Likert scale categories are: Never=1, Rarely=2, Occasionally=3, Frequently=4 and Very

Frequently=5. The data was analyzed by examining the median, mean and standard

deviation and also by using the statistical methods Pearson’s R, the Pearson chi-square

tests, and ANOVA.

10.3.2. Interviews

10.3.2.1. Data collection

As suggested by Runeson and Höst [73], this study employed the technique of semi-

structured interviews where the questions were planned but not necessarily asked in the

same order as they were listed.

10.3.2.2. Start-up interviews.

Six companies were group interviewed within total 43 practitioners (developers, product

owners, architects) with the aim of understanding which of the quality attributes listed in

the ISO/IEC’s classification [140] were the most negatively affected by having TD. These

companies also participated in the survey and in the follow-up interviews. The assessment

of the compromised quality attributes was done by an in-depth analysis by examining

www.manaraa.com

86

nine different TD issues and evaluating the impact each of these had on the listed ISO/IEC

quality attributes.

TABLE 1. CHARACTERISTICS OF THE SURVEY PRACTITIONERS

Experience

< 2 years 3.90%

2 - 5 year 10.50%

5 - 10 year 17.40%

> 10 years 68.20%

Gender

Male 89.90%

Female 8.50%

Other 1.60%

System Age

< 2 years 9.70%

2-5 years 23.3%

5-10 years 32.2%

10-20 years 28.3%

>20 years 6.6%

Education

Master’s degree 57.80%

Bachelor’s degree 25.20%

No Univ. education 6.20%

Other: 5.80%

Ph.D. degree 5.00%

Software system type*

Embedded system 48.84%

Real-time system 41.86%

Data mgn system 22.09%

System Integration 20.93%

Modeling and/or simul. 15.12%

Data analysis system 14.73%

Web 2.0 / SaaS system 8.53%

Other 8.53%

Roles

Developer 49.20%

Software Architect 24.80%

Manager 6.20%

Project Manager 6.20%

Product Manager 5.0%

Expert 5.0%

Tester 3.50%

Team size

1-5 members 23.30%

6-10 members 36.00%

11-20 members 15.90%

21-40 members 6.60%

> 40 members 18.20%

10.3.2.3. Follow-up interviews.

In total, we group interviewed seven companies where each interview included between

4 to 7 participants. Altogether, we interviewed 32 experienced software development

professionals with roles such as architects, developers, product owners and managers.

Each interview lasted between 105 and 120 minutes and was digitally recorded and

transcribed verbatim. During the interviews, compiled results from the previous survey

were presented to the respondents, where some of the most interesting findings were

highlighted together with questions related to the specific area of research.

10.3.2.4. Data analysis

The transcriptions from the recorded interviews were manually coded. To keep track of

the links between the codes and the quotations, the coding was supported by using a

Qualitative Data Analysis (QDA) tool. Based on the research taxonomy, a coding scheme

containing corresponding codes and sub-codes were implemented. To ensure that the

coding was done as consistently and reliably as possible, two authors individually coded

a set of codes and sub-codes and thereafter a synchronization of the output was performed.

10.4. Results and findings

The following subsections present results for the research question presented in Section

I. The results from RQ1 are used as input in the next following research questions.

www.manaraa.com

87

10.4.1. Affected Quality Attributes

Which quality attributes are the most affected by Technical Debt and how frequent are

those encountered during the software lifecycle and are those issues explicitly address

within software companies? (RQ1)

The aim of the six initial startup-interviews was to obtain a more profound view of which

software qualities were negatively affected and compromised due to TD. During these

startup-interviews, each ISO/IEC quality attribute presented in Section 2.1, was first

discussed separately. Secondly, nine different TD issues were analyzed in order to

evaluate which quality attributes were most negatively affected by the TD issue. As a

result from these startup-interviews, we got an aggregated view of the most compromised

quality attributes, and it was evident that maintainability, reliability, performance,

reusability and the ability to add new features were the most frequently compromised

software qualities due to TD in the software.

These five quality attributes were then used in the survey, for examining the frequency of

encountering them among all 258 survey participants. The summary statistics from the

survey showed that 60 % of all the respondents frequently or very frequently encounter

maintenance difficulties during the software lifecycle and 45 % of the respondents

frequently or very frequently encounter restricted reusability and 39 % of the respondents

frequently or very frequently encounter a limited ability to add new features. Another

interesting finding was that 3.5% (7 developers, one manager, and one software architect)

of the respondents indicated that they never experienced performance degradations in

their software, compared to that only one respondent reported never experiencing

maintenance difficulties.

The majority of the interviewees confirmed that TD, in general, has a major and direct

negative effect on those quality issues. However, one individual stated that restricted

reusability was not in direct focus within their strategy “We find that it is sort of expensive

to build generic functions so that they can be reused, it is too expensive in some cases. So

for us, it becomes less and less important actually…..We use the experiences from

different parts, but we do not reuse the code as much as we used to.”

10.4.2. TD Types and related interest

What type of TD generates the most negative impact on daily software development work

and what kind of interest is related to each TD type? (RQ2)

To understand what type of TD generates the most negative effect, the respondents were

asked to rank (score 1 = lowest impact, score 11 = highest impact) a randomly ordered

list of 11 different TD types which they consider to have the most negative impact on

their daily software development work (one rank for each type). These estimations reflect

the respondents’ perceptions of the negative impact of each TD type.

To make it easier to understand, analyze and compare the different TD types, the ranking

scores were broken down into smaller subintervals, where the highest scores 9-11 are

aggregated as High, score 4-8 are aggregated as Medium and scores below 4 are

aggregated as Low.

www.manaraa.com

88

In Table 2, the frequency for each TD type is tabulated and compared by the aggregations

of three different levels of negative impacts on the daily software development work. The

cells in the table are colored, to make it easier when comparing the values (the grayer the

cell, the higher the frequency is). As it can be seen from Table 2, Complex Architecture

Design (42.2%), Requirement TD (40.3%), and Testing TD (37.6%) reported

significantly increased frequencies in the highest impact interval, compared to the other

listed TD Types. To examine how frequently each of the compromised software quality

issues is encountered for each TD type, an assessment of the mean value of each quality

attributes in the high-frequency interval is examined.

TABLE 2. FREQUENCY OF EXPERIENCE OF EACH TD TYPES

TD Type
Frequency (%)

High Medium Low

Complex Architectural Design 42,2 38,0 19,8

Requirement TD 40,3 38,4 21,3

Testing TD 37,6 34,1 28,3

Source Code TD 29,1 38,4 32,6

Infrastructure TD 25,2 29,8 45,0

Documentation TD 24,8 41,9 33,3

Dependencies to external resources/software 22,5 26,7 50,8

Too many different patterns and policies 21,3 41,1 37,6

Uneasy/Tensed social interactions between different
stakeholders

19,4 24,8 55,8

Lack of reusability in design 19,0 39,1 41,9

Dependency violations 18,6 47,7 33,7

www.manaraa.com

89

TABLE 3. FREQUENCY OF COMPROMISED SOFTWARE QUALITY

TD Type

Frequency (mean)

Maintenance

difficulties

Poor

Reliability

Restricted

Reusability

Performance

degradations

Limited

ability to add

new features

Complex Architectural

Design
3,77 3,19 3,51 3,19 3,65

Requirement TD 3,64 3,04 3,57 2,96 3,39

Testing TD 3,61 3,36 3,36 2,99 3,29

Source Code TD 3,85 3,49 3,62 3,13 3,6

Infrastructure TD 3,53 3,13 3,27 3,11 3,30

Documentation TD 3,70 3,25 3,51 2,92 3,48

Dependencies to
external

resources/software

3,51 2,90 3,24 3,01 3,26

Too many different

patterns and policies
3,67 2,79 3,25 2,96 3,28

Uneasy/Tensed social
interactions between

different stakeholders

3,48 2,76 3,17 2,85 3,37

Lack of reusability in

design
3,6 3,13 2,91 3,13 3,29

Dependency violations 2,85 3,02 3,44 2,98 3,78

Table 3 presents a cross-tabulated view of the mean value of the encountered frequency

of each TD type and each quality issue. The table is quite revealing in several ways. First,

this table demonstrates that maintenance difficulties are most frequently encountered by

the respondents, except for the TD type where Dependency violations are the most

challenging issues (cells colored in dark gray).

Secondly, the overall highest and the lowest mean values are highlighted in Table 3 (in

bold). Maintenance difficulties are most frequently encountered by respondents

estimating that Source Code TD has the most negative impact on the daily work (mean

3.85). The least frequently encountered quality issue is poor reliability issues by

respondents having a high negative impact of social debt (mean 2.76).

Thirdly, for the first six TD types causing the highest negative impact on the respondent’s

daily work, performance degradations are the least frequently encountered during the

software life cycle (cells colored in light gray). Pearson correlation coefficients were

calculated to study if there was a linear relationship between the frequency of

www.manaraa.com

90

encountering each quality issue and the level of negative impact of each TD type. We

found a significant, correlations in Complex Architectural Design and limited ability to

add new features (r (255) =.130, p =.037). This result implies that there is a linear

relationship between the level of the negative effect of the Complex architectural design

and how often the respondents encounter a limited ability to add new features.

10.4.3. Age of the Software

How does the Age of the software system affect the interest? (RQ3)

There is a generally held view that the negative effects of TD increase with the age of the

software. In order to evaluate this view, a statistical cross-tabulated analysis showing the

interest in relation to the software age interval was used. Fig. 1 captures the difference

between the frequencies of encountering each software quality issue in relation to the age

of the software. To evaluate if there is a significant relationship between the age of the

system and the encountered frequency of each quality issue, we calculated the Pearson

correlation coefficient for each pairwise combination. This test did not indicate any

significant linear correlations within any time interval for any quality issue.

Supplementary, a Pearson chi-square test for independence of each challenge was

calculated. This test showed that there are not any significant relationships between any

of the quality issues and the age of the system. When tested explicitly if the quality issues

were encountered significant differently in relation to the age of the software, a one-way

ANOVA test showed somewhat surprising that there were only significant differences in

how the respondents encountered maintenance difficulties (F(4,252)= 2.967, p=0.033).

What is striking about the data in Fig 1, in this table is that all of the quality issues are

frequently encountered for systems with age less than 2 years. This finding shows that

the payment of interest is early introduced and persist during the whole software lifecycle.

We did not find any statically evidence that the negative effects of TD increase with the

age of the software.

Figure 1. Frequency of each software quality issue (mean) per age interval

www.manaraa.com

91

10.4.4. Wasted time and compromised quality issues

Is there a relation between the wasted time during the software life cycle and the

frequency of encountering compromised quality issues? (RQ4)

This result is based on a cross-tabulated analysis for each of the investigated quality issues

for those respondents who frequently or very frequently encounter each of the quality

issues and their estimated wasted time.

As illustrated in Fig. 4 there is a clear trend of increasing wasted time in relation to how

frequently each quality issue is encountered by the respondents. What stands out in this

figure are that 100 % (11 respondents) who frequently or very frequently encounter a

limited ability to add new features estimate their overall waste of time during the lifecycle

to more than 80 %. Based on Pearson R correlation, table 4 shows that there is a

significant positive linear correlation between all of the investigated quality issues and

the amount of the estimated wasted time. The strongest relationship was found between

the frequency of encountering poor reliability and wasted time, follow by a limited ability

to add new features and maintenance difficulties.

Figure 2. The frequency of encountered (frequently or very frequently) each quality issues in
relation to the overall wasted time during the software lifecycle.

TABLE 4. THE RELATION BETWEEN WASTED TIME AND QUALITY ISSUE

Pearson R Correlation

Quality issue ρ P-value
Strength of

correlation

Maintenance difficulties 0,262 0,000 Medium - Low

Limited ability to add new features 0,288 0,000 Medium - Low

www.manaraa.com

92

Pearson R Correlation

Quality issue ρ P-value
Strength of

correlation

Restricted reusability 0,159 0,013 Low

Performance degradations 0,154 0,015 Low

Poor reliability 0,313 0,000 Medium

10.5. Discussions and Limitations

10.5.1. Affected Quality Attributes

Which quality attributes are the most affected by TD and how frequent are those

encountered during the software lifecycle and are those issues explicitly address within

software companies? (RQ1)

Except for maintainability issues, very little was found in the literature on the question of

which quality attributes are most commonly affected by TD and the impact of each of

them. During the startup-interviews, it was evident that the respondents considered TD is

causing quality issues in general, and the interviewees recognized specifically the

negative impact on maintainability, reliability, performance, reusability and the ability to

add new features. This analysis was also confirmed during the follow-up interview where

the majority of the interviewees’ company had identified these issues and addressed them

in their software strategy.

When examining the frequency of encountering these quality issues within the survey,

the most obvious finding to emerge from the analysis was that all of these quality issues

were on average more often than occasionally encountered whereas, maintenance

difficulties were the most frequently encountered quality issue. This finding supports the

importance of that software companies need to manage TD and reverse TD proactively

or potentially face compromised quality issues in the future.

10.5.2. TD Types and related interest

What type of TD generates the most negative impact on daily software development work

and what kind of interest is related to each TD type? (RQ2)

The second question in this study sought to determine the level of negative impact

different TD types have in daily development work and to relate each of these TD types

to the frequency of encountering the identified quality issues. The overall survey results

reveal that Complex Architectural Design, closely followed by Requirement TD,

generates the most negative impact on daily software development work. When

conducting a more detailed analysis of all the different TD types concerning the quality

issues, maintenance difficulty was found as most frequently encountered within all

www.manaraa.com

93

different TD types, except for the TD type where Dependency violations are the most

challenging issues. Perhaps one of the most important findings in this research question

was the linear correlation between the level of the negative effect of the Complex

architectural design and how often the respondents encounter a limited ability to add new

features. However, it should be noted that a significant correlation does not necessarily

imply causation. The research presented here confirms that it is important to pay extra

attention to the architectural design of the software, in order for the software to be able to

grow in the future.

10.5.3. Age of the Software

In what way does the Age of the software system affect the interest? (RQ3)

There is a general view that the quality issues such as maintenance complications,

restricted usability, limited ability to add new features, performance degradations and

poor reusability increase over time within the software lifecycle. However, the findings

of this study do not support such views.

The results show no linear or any other significant relationships between the age of the

system and the frequency of encountering each of the quality issues. The frequency of

encountering the quality issues within the different time interval was only significantly

different for maintenance difficulties and for the other quality issues, no significant

differences were found.

10.5.4. Wasted time and compromised quality issues

Is there a relation between the wasted time during the software lifecycle and the frequency

of encountering compromised quality issues? (RQ4)

These research findings confirm that there are significant positive linear correlations

between all of the investigated quality issues and the amount of the estimated wasted

time. This indicates that the more often the practitioners encounter each quality issue, the

more software development time is wasted.

This indicates that the more software development time is wasted, the more often the

practitioners encounter each quality issue. Taken together, these results suggest that

software productivity in terms of less wasted time could be increased by remediating TD

and thereby less frequently encountering the quality issues and in that way, waste less

software development time.

Taken together, these findings raise novel insights about how the consequences due to

having TD, negatively affects several different software quality attributes. Based on

collected data from 258 software practitioners, the generally held view of that the

frequency of encountering software quality issues increases in relation to the age of the

software, was not possible to confirm. Contrary, our result shows that the frequency of

encountering the compromised quality attributes starts early and continuous during the

whole lifecycle. The results also imply that by remediate TD will gain less software

quality issues.

www.manaraa.com

94

10.6. Threats to validity

For verifiability reasons, we have made information available online. All survey

questions, used in this paper, are available at the link

https://zenodo.org/record/163116#.WA9A3_5PpD8.

The result of this research may be affected by some threats to validity. Construct validity

reflects what extent the operational measures that are studied represent, what the

researchers have in mind and what is investigated according to the research questions

[73]. To mitigate this risk and to make sure that the respondents were considering the

correct type of TD issues, a short description of each type of TD was used in the survey.

An additional threat to this validity can stem from the fact that the qualitative data derived

from the survey are based on perceptions and estimations (not on measured or observed

data) made by the respondents. This study could suffer from internal validity when the

causal relationships were examined as it affects our ability to explain the phenomena that

we observed accurately. Thus, our findings are correlational, and we cannot infer

causality, an example of this could be where we use the estimated wasted time correlated

with the frequency of how often the respondent encountered each of the compromised

quality attributes. By doing this correlation, this validity could have been violated by

either finding relationships that are nonexistent or missing real relationships that are

wrongly deemed non-significant. However, taken together, the findings indicate a causal

relationship but to needs to be better verified with further studies. External validity

focuses on to what extent it is possible to generalize the findings. There is always a risk

in surveys that the sample is biased and for this topic, a potential threat refers to the

demographic distribution of response samples. Most of the data from the invited

companies for the survey and the interviewed companies was gathered in Scandinavia.

Thus, the results might be different in other geographical and cultural areas. Reliability

addresses whether the study would yield the same results if other researchers replicated

it. To mitigate this threat, we have employed source triangulation, methodological

triangulation, and finally observer triangulation.

10.7. Conclusion

Technical Debt (TD) is evidently detrimental to software companies, and it is important

to assess and estimate the consequences of TD in terms of its negative impact on system

quality attributes. This study is based on initial startup interviews with 43 participants, a

survey with 258 respondents and follow-up interviews with 32 practitioners. This study

has shown that TD most negatively affects the quality attributes maintainability,

reliability, performance, reusability and the ability to add new features, where

maintenance difficulties, restricted reusability and limited ability to add new features are

most frequently encountered quality issues during the software lifecycle.

This study also reveals a linear relationship between the level of the negative effect of

complex architectural design and the frequency of how often the respondents encounter

a limited ability to add new features. This study could not confirm the generally held view

that the amount of compromised quality attributes increases with system age, our results

https://zenodo.org/record/163116#.WA9A3_5PpD8

www.manaraa.com

95

imply that it is important to very early in the lifecycle remediate TD in order to the keep

the frequency of compromised quality attributes down.

This study has also shown that there is a correlation between how software practitioners

estimated their wasted software development time and the frequency of how often they

experience each quality issue.

All these findings emphasize the importance of understanding how TD negatively affects

the system quality, in order to proactively manage it in terms of allocating time, resources

and additional effort. These findings provide strong empirical confirmation that both

practitioners and researchers need to focus more attention and effort on deliberately

remediating TD, in order to reduce costly interest payments.

www.manaraa.com

96

www.manaraa.com

97

11. The Pricey Bill of Technical Debt

The aim of this chapter is to estimate waste of working time, caused by the TD during the

software lifecycle, and also to investigate how practitioners perceive and estimate the

impact of the negative consequences due to TD during the software development process.

Software companies need to support continuous and fast delivery of customer value both

in short and a long-term perspective. However, this can be hindered by evolution

limitations and high maintenance efforts due to internal software quality issues by what

is described as Technical Debt. Although significant theoretical work has been

undertaken to describe the negative effects of Technical Debt, these studies tend to have

a weak empirical basis and often lack quantitative data. This paper reports the results of

both an online web-survey provided quantitative data from 258 participants and follow-

up interviews with 32 industrial software practitioners. The importance and originality of

this study contributes and provides novel insights into the research on Technical Debt by

quantifying the perceived interest and the negative effects it has on the software

development lifecycle. The findings show that on average, 36 % of all development time

is estimated to be wasted due to Technical Debt; Complex Architectural Design and

Requirement Technical Debt generates most negative effect; and that most time is wasted

on understanding and/or measuring the Technical Debt. Moreover, the analysis of the

professional roles and the age of the software system in the survey revealed that different

roles are affected differently and that the consequences of Technical Debt are also

influenced by the age of the software system.

11.1. Introduction

Technical Debt (TD) is recognized as a critical issue in today’s software development

industry [7]. Since this phenomenon is detrimental to software companies, it is important

to assess and estimate the consequences of Technical Debt in terms of the scale of wasted

time and effort.

Ward Cunningham [91] introduced the financial metaphor of TD in order to describe to

nontechnical product stakeholders the need to recognize the potential long-term negative

effects of the immature code that is made during the software development lifecycle. Such

debt has to be repaid with interest in the long term. Interest is the negative effect of the

extra effort that has to be paid due to the accumulated amount of TD in the system, such

as executing manual processes that could potentially be automated or spending excessive

effort on modifying an unnecessarily complex code, performance problems due to lower

resource usage caused by an inefficient code and similar costs. Ampatzoglou et al. [30]

define interest as “The additional effort that is needed to be spent on maintaining the

software because of its decayed design-time quality.” Nowadays, it is well established

This chapter has been published as:

The Pricey Bill of Technical Debt – When and by whom will it be paid?

T. Besker, A. Martini, and J. Bosch

In Proceedings of the IEEE International Conference on Software Maintenance and

Evolution (ICSME), Shanghai, China, pp. 13-23, 2017.

www.manaraa.com

98

that TD has a negative impact on software development organizations by hindering

evolution and causing high maintenance costs due to internal software quality issues

[18],[109],[22],[24],[103].

Left unmanaged, TD can result in unexpectedly large cost overruns, severe quality issues,

inability to add new features [50] and even lead to a crisis point when a huge, costly

refactoring or the replacement of the entire system needs to be undertaken [5],[95].

There are many different types of TD (such as Architectural TD, Requirement TD, Test

TD, Code TD), which differ in the degree of their negative impact and consequently cause

various levels of wasted time during the software development process. Several

professional roles participate in the software development process, and could possibly be

affected by TD in diverse ways. Furthermore, as the software ages, different types of TD

could have varying negative effects and could possibly generate a dissimilar distribution

of extra time spent on different activities. However, little knowledge and few supporting

tools are available to measure the extent of TD within a system and, in addition, the time

spent on TD related issues is not made explicitly visible and measurable. Without such

knowledge, software development organizations do not know the interest that they are

paying on the debt, and therefore they might not give TD management the necessary

attention.

We will answer the research questions by using survey data based on software

professionals’ perceptions. All survey respondents were experienced in software

development, and therefore, their estimates were likely to be formed by what they have

heard, observed, and experienced at their workplaces.

To the best of our knowledge, there are no studies quantifying the interest in terms of how

much time (observed, measured or estimated) is wasted due to TD and how this wasted

time varies in relation to the system age and its impact on a range of professional software

roles. We, therefore, aim to answer the following research questions (RQ):

RQ1. How much of the overall development time is wasted because of Technical Debt?

RQ2. What kind of Technical Debt Challenges generates the most negative impact?

RQ3. What are the various activities on which extra-time is spent as a result of

Technical Debt?

RQ4. In what way does the age of the software system affect the questions stated in

RQ1-3?

RQ5. In what way are the different software roles affected by the questions stated in

RQ1-3?

This study offers a contribution to research, with respect to the existing body of

knowledge about TD in the following important areas:

1. We provide a survey- and interview-based study on how practitioners experience TD

within the software industry based on both quantitative and qualitative data.

2. This study attempted to quantify the interest in terms of wasted software development

time. We present results that the average estimated wasted software development

time is 36%, because of TD.

www.manaraa.com

99

3. We present results showing that Complex Architectural Design, closely followed by

Requirement TD, generates the most negative impact on daily software development

work.

4. This study provides new insights into TD research by showing that the most wasted

time is spent on Understanding and/or Measuring the TD.

5. This research reveals that different roles within software development are affected

differently by TD. We found that the amount of estimated time spent as interest of

TD is supported by all roles. Furthermore, different roles waste time on different

activities, hence experiencing different negative impacts of TD.

6. This study shows that the degree of wasted time varies with the age of the software.

Although the amount of wasted time result does not show a linear progression, the

wasted time varies in relation to the system age.

7. To both practitioners and academics, this study demonstrates the relevance of paying

more attention and effort to remediate TD deliberately.

The remainder of this paper is structured in seven sections, where the second section

introduces related work. In the third section, the research method is described. The fourth

section presents the results that are discussed in section five. Finally, in section six, threats

to validity are presented, and section seven concludes the paper.

11.2. Related work

This section presents related research, both based on empirical survey-based data and on

other TD related studies.

11.2.1. Empirical survey-based studies on TD

By reviewing other survey-based studies focusing on TD, we found four survey-based

studies which somewhat related to our investigation.

Ernst et al. [16] conducted a survey within three large organizations, with 536 respondents

and seven follow-up interviews. The result of that study shows that “bad architecture

choices” are the greatest source of TD. This study also concludes that the degree of

architectural drift is related to system age. They found a weak association between system

age and the perceived importance of architectural issues where 89% of the respondents

with system age ≥ 6 years agreed or strongly agreed with the notion that architectural

issues were a significant source of debt, compared to 80% of those with newer. In contrast,

to that study, our study also includes how different roles perceive TD and also has a finer

granularity of the age intervals and therefore, provides a more detailed analysis.

Furthermore, this study provides a wider coverage in terms of including an investigation

of how all different TD issues, not only the architectural related TD, vary in relation to

the system age.

[17] conducted a survey of 54 Finnish software practitioners investigating the level of TD

knowledge, how TD occurs in projects and which of the applied agile components of the

development was sensitive to TD. They found that the most frequent causes of TD were

www.manaraa.com

100

inadequate architecture and inadequate documentation. In this study, we cannot find a

quantification or estimation of the interest, there is no explanation about what type of

activities on which extra-time is spent, and perspective of different roles or age of the

software are not investigated.

This paper is somewhat also related to our previous papers [144],[95], where we

specifically study the architectural type of TD and address how TD negatively affects

different software quality attributes. However, even though the data were collected using

the same survey, this study uses different data and focusing on several different types of

TD and compare those with each other regarding the scale of wasted time and effort,

rather than quality.

11.2.2. Prior research on TD related issues

Kazman et al. [116] present a case study of identifying and quantifying architectural debts

in an industrial software project, using code changes as a proxy for calculating the

interest. This study focuses on identifying the architectural roots of TD, meaning that the

study does not address the cost of interest, but instead aims at quantifying the expected

payback for refactoring. These costs are to some extent based on estimated values from

the interviewed architects and based on these assumptions, the expected benefit from the

refactoring is calculated. Compared to that study, this study focus on several different

types of TD (not only on the architectural TD) and this study have a focus on quantifying

the interest in terms of wasted time instead of a focus on locating the roots of the

architectural TD and the expected benefit from the refactoring. Falessi et al. [104] argue

that the interest is non-linear and has a probability to grow exponentially rather than

linearly. By analyzing source code, Nugroho et al. [142] describe that the interest grows

differently on a 10-years horizon, depending on a star rating system of the software. They

present calculations based on assumed values and empirical data which illustrates that the

interest grows linear for 3-star systems and close to linear for 4-star systems. However,

such study is based on known metrics (which do not cover the full spectrum of TD types)

and on code changes as an estimation of interest.

In summary, although, there have been some attempts on quantifying the interest of TD,

there is a lack of empirical investigations including software practitioners. Also, TD

interest has not been studied holistically (including all types of TD). Finally, the interest

has not been put in relation to the system age and to how it affects different professional

roles.

11.3. Methodology

In this study, a combination of quantitative and qualitative research approaches is used.

We aimed at using methodological, source and observer triangulation in order to increase

the validity and the reliability of the result. Methodological triangulation refers to the

utilization of both qualitative and quantitative methods for gathering data [89], source

triangulation refers to using different sources of data while observer triangulation refers

using more than one observer in the study [73]. Triangulation is important to increase the

www.manaraa.com

101

precision of empirical research and thus to provide a broader picture [73]. The following

sections describe the methods used for conducting the survey and the complementing

qualitative follow-up interviews.

11.3.1. Survey

The web-survey was designed and hosted by the online survey service called

SurveyMonkey. The survey was using a mix of open- and closed-ended questions. The

questions were a combination of optional and mandatory nature. To avoid bias in the

survey, the questions were developed as neutral as possible, ordered in a way that one

question did not influence the response to the next question, and a description was

provided when needed [78]. The first draft of the survey was tested by four industrial

practitioners (developer, manager, project owner, and software architect) and by two

Ph.D. candidates in order to evaluate the understanding of the questions and the usage of

common terms and expressions [77]. During this evaluation, we also monitored the time

needed to complete the survey. The survey was made accessible between February and

March 2016, and a reminder was sent out after two weeks to those who had been

specifically invited. The survey was anonymous, and participation in the survey was

voluntary.

11.3.1.1. Data collection

The survey invitation was mailed directly to seven companies/partners within our

networks, all located in Scandinavia, with an extensive range of software development,

and invitations were also published at software engineering related networks on LinkedIn.

Across all these collaborators, 312 respondents began the survey, and 258 respondents

answered all questions. Due to this high completion rate (83%), we decided to reject the

incomplete questionnaires, according to the guidelines by Kitchenham and Pfleeger [78].

The first part of the survey gathered descriptive statistics to summarize the backgrounds

of the respondents and their companies. This data is compiled and presented in Table I.

The level of education of the respondents was quite high, with 58% having a Master

degree and 25% having a Bachelor degree. The survey included respondents having

different roles, where 49% were Developers/Programmers/-Software Engineers, while

25% were Software Architects. Approximately 78% of the Software architects and 59%

of the Developers/- Programmers/Software Engineers had more than ten years of

experience. The most common size of the software development team included 6-10

members (36 %), and most (32%) systems were on average 5-10 years old from their

initial design. Nevertheless, a significant number (35%) of the respondents’ systems were

more than ten years old. Most of the software systems were embedded systems (49%) and

Real-time system (42%). However, in this specific survey question, the respondents could

select more than one option.

The second part of the survey included questions based on the research questions

presented in Section I.

www.manaraa.com

102

In this part of the survey, the participants were asked to estimate their perception of the

three survey questions (SQ):

SQ1. Which of the following challenges generates the most negative impact on your

daily software development work? Please rank them from 1 to 11.

SQ2. How much of the overall development time is wasted because of these issues?

(Do not consider fixing and managing the issues, just if they hinder you when you

add/change/understand the system).

SQ3. If you take into consideration your most recent projects and the issues listed in

SQ1, which of the following activities did you spend most of your extra time on? Please

rank them from 1 to 6.

TABLE I - CHARACTERISTICS OF THE SAMPLE SURVEY

Individual Company

Experience

< 2 years 3,90%

2 - 5 year 10,50%
5 - 10 year 17,40%

> 10 years 68,20%

Education

Master’s degree 57,80%

Bachelor’s degree 25,20%

No Univ. education 6,20%
Other: 5,80%

Ph.D. degree 5,00%

Roles

Developer/Program/

-Software Engineer ** 49,20%

Software Architect 24,80%

Manager 6,20%

Project Manager 6,20%

Product Manager 5,0%
Expert 5,0%

Tester 3,50%

Gender

Male 89,90%

Female 8,50%

Other/no share 1,60%

Team size

1-5 members 23,30%
6-10 members 36,00%

11-20 members 15,90%

21-40 members 6,60%
> 40 members 18,20%

Software system type*

Embedded system 48.84%

Real-time system 41.86%

Data management system 22.09%
System Integration 20.93%

Modeling and/or simul. 15.12%

Data analysis system 14.73%
Web 2.0 / SaaS system 8.53%

Other 8.53%

System Age

< 2 years 9,70%

2-5 years 23,3%

5-10 years 32,2%
10-20 years 28,3%

>20 years 6,6%

* More than one option was selectable, ** Abbreviated as Developer in this paper

For the question SQ1, the different categories and sub-categories provided by [15] were

used to distinguish the different TD types (Complex Architectural Design, Requirement

TD, Testing TD, Source Code TD, Documentation TD, Too many different patterns and

policies, Dependency violations, Infrastructure TD, Lack of reusability in design,

Dependencies to external resources/software, and Uneasy/Tensed social interactions

between different stakeholders).

In survey questions, SQ2 and SQ3, these same types of TD were referred to in order to

ensure a better construct validity of the survey. In SQ2, the estimation of the interest as

wasted time was indicated in predefined percentage intervals of <10%, 10-20%....80-90%

www.manaraa.com

103

and I don’t know. In order to separate the time spent on management, the respondents

were asked not to include the time spent on fixing and managing the issues. In SQ3, the

respondents could indicate their level of agreement on a 6-point Likert Scale (Strongly

agree…Strongly disagree).

11.3.1.2. Data analysis

The data from the survey was analyzed in a quantitative fashion, i.e. by interpreting the

numbers obtained from the answers. All analyses were carried out using the software

SPSS (version 22). Descriptive statistics were employed to organize and analyze the

qualitative data by using tables and charts. To allow for ordinal comparison, a

transforming from Likert scale to numeric value has been used. The assigned ordinal

values for the Likert scale categories were: Never = 1, Rarely = 2, Occasionally = 3,

Frequently = 4 and Very Frequently = 5.

The data was analyzed by studying the median, mean and standard deviation and also by

using the statistical methods Pearson’s R, the Pearson chi-square tests, and ANOVA. The

Pearson's R method computes the pairwise determining the strength and direction of the

association between two metrics and can be used to measure a linear association between

two metrics. The Pearson chi-squared tests are used for evaluating how likely it is that

any observed difference between the sets arose by chance, and the test of independence

assesses whether unpaired observations on two variables are independent of each other.

The one-way ANOVA was used to identify significant differences in mean values. Mainly

three different types of quantitative analysis were conducted, in order to synthesize the

result for each research question:

• General results: all the answers are considered, composed and used as a result to

draw conclusions common to all roles and all system ages.

• System Age: all answers are grouped into system age intervals of <2 years, 2-5 years,

5-10 years, 10-20 years, and >20 years. The time refers to the age from initial design.

The age intervals are treated as categorical data.

• Role: all the answers are grouped into roles of Developer, Expert, Manager, Product

Manager, Project Manager, Software Architect, and Tester.

11.3.2. Interviews

11.3.2.1. Data collection

Interviews can be divided into unstructured, semi-structured and fully structured

interviews. As suggested in [145], this study employed the technique of semi-structured

interviews where the questions were planned but not necessarily asked in the same order

as they were listed. This semi-structured interview technique allowed flexibility and

exploration of the studied objects by asking follow-up questions based on the

respondents’ answers. All interviews were group interviews and were conducted using

the guidelines suggested by Krueger and Casey [146].

www.manaraa.com

104

In total, we interviewed seven companies, where each interview included between 4 to 7

participants. These companies did all participate in the survey, and all the interviewees

had answered the survey before the interview. Altogether, we interviewed 32 experienced

software development professionals with roles as architects, developers, product owners

and managers.

Each interview lasted between 105 and 120 minutes and was digitally recorded and

transcribed verbatim. During the interviews, compiled results from the previous survey

were presented to the respondents, where some of the most interesting findings were

highlighted together with questions related to the specific area of research. This

presentation allowed the respondents to more easily relate the interview questions to the

result of the survey.

The interview questions were designed to a) increase the understanding of the survey

results, b) ensure that the questions in the survey were understood and interpreted as

intended and in a uniform way, c) confirm the result from the survey, and d) understand

the implications of the survey results. The questions were developed to cover the same

taxonomies as in the survey. The following are examples of the questions asked during

the interview:

• What do you consider to be a Complex Architectural Design?

• If the wasted time could be reduced, how would that affect your software

development process?

11.3.2.2. Data analysis

The transcriptions from the recorded interviews were manually coded using established

guidelines in the literature [147]. To assess and rate the level of confirmation by the

interviewees of the survey result, a three-level classification of the confirmation was used;

Strongly Confirming (SC), SomeWhat Confirming (SWC) and DisConfirming (DC). The

result from the survey, which was expressly and unambiguously confirmed by

interviewees, was classified as SC. The results which were not confirmed or those that

were confirmed but with deviations were classified as DC.

11.4. Results and Findings

The following subsections present results for the research questions presented in Section

I, and the results are grouped according to each research question.

11.4.1. How much of the overall development time is wasted because of

Technical Debt? (RQ1).

This research question focuses on the TD interest in terms of how much of the overall

development time is wasted. The estimated wasted time does not include fixing and

managing the issues. Fig. 1 provides an overview of the distribution of the estimated

wasted time which is represented by different percentage intervals of the overall

development time.

www.manaraa.com

105

The most striking result emerging from the data is that, on average, the respondents

estimated that 36% of all software development time is wasted because of paying the

interest of TD (excluding the Don’t know option -3,5% of the respondents), with the

standard deviation of 17,8%. It can be seen from the data in Table II that the result from

the survey was almost consistently Strongly Confirmed (SC) during the group interviews.

Only during one interview (Intv 6), one interviewee expressed “It is probably more than

36% “.

Figure 1. Estimated wasted software development time

Furthermore, the interviews also coherently revealed that if this detrimental waste of time

could be reduced, the company would spend more time on adding new features and

reducing the time to market for their software products. The interviewees also

unanimously described that this huge waste of time is detrimental to their work, and its

implications must be clearly recognized and understood.

TABLE II - INTERVIEW CONFIRMATION – WASTED TIME

Intv 1 Intv 2 Intv 3 Intv 4 Intv 5 Intv 6 Intv 7

SC SC SC SC SC SWC SC

11.4.2. System Age effect on wasted time (RQ4)

In order to assess whether the interest changed or not during the software life cycle, a

statistical cross-tabulated analysis showing the interest in terms of the wasted time in

relation to the system age interval was used. Fig. 2 captures the difference between the

estimated time wasted in relation to the age of the software. For a system with age less

than two years, on average, 33.8% of the software time is estimated to be wasted but for

a system older than 20 years, the estimated wasted time average is 40.5%. The degree of

the wasted time thus varies with the age of the software and to evaluate if there is a linear

correlation between the system age and the wasted time, we used the Pearson correlation

method.

www.manaraa.com

106

Figure 2. Wasted time in relation to System Age

These two data series (we used the average age within each year interval), returned a p-

value of 0.059, which showed no support for a linear correlation of the wasted time and

the age of the system. We concluded that no evidence was found for linear associations

between the amount of wasted time and the age of the system.

Furthermore, the Pearson Chi-square test of dependence (χ2= 58.64, df=36, p=0.010)

showed that the two factors (wasted time and system age) are not independent, which

means that we could not reject the hypothesis that the system age influences the wasted

time.

11.4.3. Different Roles’ estimation of the wasted time (RQ5)

In this section, we explore whether different professional roles estimate the wasted time

differently. When tested explicitly if the roles estimate the wasted time differently, a one-

way ANOVA test showed that there were no significant differences

(F(6.242)=0.926,p=0.477).

To graphically visualize the differences of distributions of the estimated wasted time, Fig.

3 represents a boxplot for each of the roles. The box-plot represents the minimum and

maximum range values, the upper and lower quartiles, and the median. From the boxplot,

we can see that the estimated wasted time is relatively consistent with the different roles

(median range of 30-45 % and standard deviation range of 14.4–20.6 %). In this figure,

we can also see that Software Architects and Experts estimate the highest average percent

of the wasted time (41%), whereas Developers estimate the lowest value of wasted time

(35%). One unanticipated result of the analysis showed that five of the Software

Architects and seven of the Developers were found to estimate their wasted time to more

than 70%.

www.manaraa.com

107

 Figure 3. Distribution of the estimated Wasted Time by different Roles

11.4.4. What Challenges generate the most negative impact on the daily

software development work? (RQ2)

To understand what type of TD generates the most negative effect, the respondents were

asked to rank (score 1 = lowest impact, score 11 = highest impact) a randomly ordered

list of 11 different challenges which they consider to have the most negative impact on

their daily software development work. The different listed challenges reflected the

different types of TD that emerged from [15].

There are several possible statistic values to study when evaluating a ranking result. This

question involves an examination of the mean, the median and a grouping of different

sets of scores.

In Fig. 4, the summary statistics for each Challenge reveal that a Complex Architectural

Design (mean rank 7.27) and Requirement TD (mean rank 7.23) generates the most

negative impact on daily software development work, both when studying the mean and

the median values. To make it easier to understand, measure, analyze and compare the

different challenges, the ranking scores were broken down into smaller subintervals

(called class intervals), where the highest scores 9-11 are aggregated as High, score 4-8

are aggregated as Medium and scores below 4 are aggregated as Low.

www.manaraa.com

108

Figure 4. Mean and median of the rankings for each Challenge

For each class interval, the amount of data items falling within each impact interval is

counted.

In Table III, the frequency for each challenge is tabulated and compared by the

aggregations of three different levels of negative impacts on the daily software

development work.

To make it easier when comparing the values, the cells in the table are colored (the grayer

the cell, the higher the frequency is). As it can be seen from this table Complex

Architecture Design (42.2%), Requirement TD (40.3%), and Testing TD (37.6%) reported

significantly increased frequencies in the highest impact interval, compared to the other

listed challenges.

As illustrated in Table IV, during the group interviews where this result was presented,

the interviewees Strongly Confirmed (SC) this result as reflecting their interpretation of

the challenges within their organizations consistently.

TABLE III - FREQUENCY OF CHALLENGES

Challenge
Frequency (%)

High Medium Low

Complex Architectural

Design
42,2 38,0 19,8

Requirement TD 40,3 38,4 21,3

Testing TD 37,6 34,1 28,3

Source Code TD 29,1 38,4 32,6

Infrastructure TD 25,2 29,8 45,0

www.manaraa.com

109

Challenge
Frequency (%)

High Medium Low

Documentation TD 24,8 41,9 33,3

Dependencies to

external

resources/software

22,5 26,7 50,8

Too many different

patterns and policies
21,3 41,1 37,6

Uneasy/Tensed social

interactions between

different stakeholders

19,4 24,8 55,8

Lack of reusability in

design
19,0 39,1 41,9

Dependency violations 18,6 47,7 33,7

TABLE IV - INTERVIEW CONFIRMATION – CHALLENGES

Intv 1 Intv 2 Intv 3 Intv 4 Intv 5 Intv 6 Intv 7

SC SC SC SC SC SC SC

11.4.5. System Age effect different negative effects. (RQ4)

To assess whether the age of the system has an influence on the challenges during the

software lifecycle, we measured the pairwise combinations for the different system age

intervals with the means of the challenges.

Fig. 6 shows each challenge’s impact in relation to the system age interval, that

respondents of different software system ages interpret the challenges differently and that

the impact of the challenges varies over time.

Determined by one-way ANOVA, there is a statistically significant difference between

the mean value in the system age intervals for Requirement TD (F(10)= 1.917, p= .043),

Complex Architectural Design (F(10)= 1.928, p= .042) and Uneasy/-Tensed social

interactions (F(10)= 1.911, p= .044).

Furthermore, the data in Fig. 6 reveals that Requirement has the highest mean value for

systems that are less than ten years old, whereas, for systems older than 10 years, a

Complex Architectural Design has the highest mean value.

To evaluate if there are any correlations between the time intervals (where the average

age within each interval is used) and the median of the scores, we calculated the Pearson

correlation coefficient by measuring the strength of a linear relationship between the pair

data. The Pearson correlation coefficient for all the data series varied between 0.013 and

www.manaraa.com

110

0,179 (independent of a positive or negative correlation). The test is not indicating any

significant linear correlations in any time interval. Supplementary, a Pearson chi-square

test for independence of each challenge was calculated to evaluate if any factors gave a

significant response (p-value < 0.1). This test showed that the factors for system age and

Requirement (χ2= 59.33, df= 40, p= 0.025), Patterns and policies (χ2= 58.8, df = 40, p =

0.028), and Social interactions (χ2= 77.5, df = 40, p = 0.000) are not independent. This

indicates that there is a significant relationship between these challenges and the system

age.

The previous result showed that Complex Architectural Design and Requirement TD

generate the most negative impact on daily software development work, and the value of

Requirement TD was observed having the absolute highest negative impact within the

age interval of 2-5 years (mean value 7.87). The value of Complex Architecture Design

was observed having the highest negative impact on systems with an age interval of 10-

20 years (mean value 8.08) and the lowest value for the age interval of <2 years (mean

value 6.56).

11.4.6. How different Roles interpret the Challenge (RQ6)

In this section, we explore how different roles interpret which Challenge has the most,

and second most negative impact on their daily software work, by a cross-tabulation of

the two datasets. Table V provides the mean value and the highest and second highest

rates (aggregation of score 9-11) of the challenges for each role, using the same

aggregation as described in Section IV.B. Table V is quite revealing in several ways; it is

apparent that for Developers, Product Managers, Project Managers, and Testers, the

Complex Architecture Design has the most negative impact. Meanwhile, Software

Architects and Managers interpret the Requirement TD to generate the most negative

impact.

A striking result emerging from Table V is also that Tester is the role that estimates the

greatest negative impact of Complex Architectural Design, were 56% or these

professionals estimates this challenge is having the highest rankings (scores >8) with a

mean value of 8.1. The overall result shows that Complex Architecture Design is the most

commonly estimated challenge by having the greatest negative impact on the daily

software development work among all the different roles.

However, it is also worth noting that both Requirement TD and Testing TD are frequently

estimated as having the second most negative impact on respondents' daily software work.

TABLE V - ROLES INTERPRET NEGATIVE EFFECT OF CHALLENGES

Role

Negative impacts

Challenge (first and second rate) Mean Value

Developer
1.Complex Architectural Design

2.Testing and Requirement

7,4

6,9/7,2

www.manaraa.com

111

Role

Negative impacts

Challenge (first and second rate) Mean Value

Experts
1.Documentation

2.Requirement

7,1

7,2

Managers

1.Requirement and Testing

2. Complex Architectural Design and
Lack of reusability

8,6/7,2

7,3/6,9

Product Managers
1.Complex Architectural Design
2. Environment and infrastructure and

Lack of reusability

7,6

6,5/6,5

Project Managers
1.Complex Architectural Design

2. Testing and Requirement

8,3

7,0/7,9

Software
Architects

1.Requirement TD
2. Low Code quality

7,3
6,9

Testers
1.Complex Architectural Design / to
many Patterns and policies

2. Environment and infrastructure

8,1/7,2

6,9

11.4.7. What are the various activities on which extra-time is spent as a

result of Technical Debt? (RQ3)

Due to TD in software systems, a lot of extra time is spent on different activities which

do not deliver any direct value to the customer. In an attempt to understand how this extra

time is spent, we asked the respondents to the survey to refer to their most recent project

and rank different listed activities on which they spent their most extra time.

The ranking scale was set from 1 to 6, where score 1 refers to that activity of which the

least extra time is spent while score 6 represents the activity of which most extra time is

spent. The specified activities were recognized during previous research by interviews

with practitioners as common activities within the TD research field [23]. It can be seen

from the data in Table VII, that the survey results showed how 20.63% of the respondents

estimated that most extra time (score 6) is spent on Understanding and/or measuring the

issues (mean value 4.38), while 22.98% of the respondents estimate that most extra time

(score 6) is spent on Management processes such as tracking, monitoring, and

communication of the issues (mean value 3.89). Only 2.05% of the respondents pointed

out that they spend most extra time on the activity of Deciding, which issue to refactor

first.

As illustrated in Table VI, all the interviewees Strongly Confirmed (SC) the results from

the survey on the spending of the extra-time.

www.manaraa.com

112

TABLE VI - INTERVIEW CONFIRMATION – ACTIVITIES

Intv 1 Intv 2 Intv 3 Intv 4 Intv 5 Intv 6 Intv 7

SC SC SC SC SC SC SC

11.4.8. System Age effect how the extra time is spent (RQ4)

To investigate if and in what way the system age of the software influence how the extra

time is spent, a cross-tabulated table was created with the mean value of each activity and

the system age intervals. In addition, we used Pearson correlation analysis to test the null

hypothesis that the interest for each activity grows linearly in relation to the age of the

system. Even if the distribution is not normal distribution (due to Shapiro-Wilk test,

p>.05), we have applied the statistical test Pearson R since this method is not very

sensitive to moderate deviations from normality [148].

Results obtained from the survey are visualized in Fig. 5 and in Table VII. The

examination of the highest mean value for software with a system age less than two years

reveals that most extra time is spent on the activity of Understanding and/or measuring

the issues (mean value 4.2). This activity slightly increases for the system age intervals

of 2-5 years (mean value 4.3), 5-10 years (mean value 4.4) and 10-20 years (mean value

4.5) and finally, for software with a system age more than 20 years the time spent on this

activity decreases back to the initial mean value 4.2.

From the boxplot in Fig. 5, we can see the distribution of the rating of the time spent on

Understanding and/or measuring the issues in relation to the system age. It shows that

the median of the rating changes between 4 and 5 and that the answers are unevenly

distributed among the different system age intervals. A striking observation emerging

from the data comparison was that the extra time spent on the Deciding which issues to

refactor first activity is the lowermost in all system age intervals, with a mean value

varying between 2.6 and 2.9.

In order to test the hypothesis that the time spent on these activities increase in relation to

the system age, we studied if and how the time spent on the different activities changed

in relation to the system age.

First, the Pearson correlation coefficient for the system age intervals where the average

year within each interval is used. The variables for each activity varies between 0.012 and

0.041 (independent of positive or negative correlation), thus not indicating any significant

linear correlation between the time spent on each activity in relation to the system age.

Secondly, results from a one-way ANOVA revealed no significant differences among the

time spent on the activity for each system age interval. We, therefore, reject the hypothesis

that the time spent on these activities significantly differs or linearly increases in relation

to system age.

www.manaraa.com

113

TABLE VII - EXTRA TIME SPENT ON ACTIVITIES

Activity
Mean

Score 6

(highest)

Understanding and/or measuring the

issues
4.38 20.63 %

Management process of the issues

(track, monitor, communicate)
3.89 22.98 %

Finding the issues 3.69 19.68 %

Refactoring the issues 3.59 15.35 %

Deciding which issue to refactor first 2.89 2.05 %

Other 2.50 15.15%

Figure 5. Distribution of understanding and/or measuring the issue

11.4.9. How professionals with different roles spend their extra time on

different activities (RQ6)

It is inevitable that professionals having different roles will spend their extra time

differently and on different activities. Accordingly, we wanted to explore how the roles

estimate the extra time spent on the different activities. Fig. 8 compares the summary

statistics on how the roles estimate the time spent on different activities, and it is evident

from the figure that different roles spend their extra time on different activities.

We can see that Developers, Experts, Product Managers, and Project Managers spend

most extra time on Understanding and/or measuring the issues. Meanwhile, Managers,

Software Architects, and Testers spend most of their extra time on the Management

process. Interestingly, the Managers represent the role that spends more extra time on the

Refactoring the issues, and they are closely followed by Experts and Software Architects.

www.manaraa.com

114

Further, determined by one-way ANOVA, is a statistically significant difference between

the mean value describing how the roles spend the time for the activities of Finding the

issue (F(6)=2.201,p=.044), Understanding and/or measuring the issues (F(6)=2.894,

p=.01), Management process of the issues (F(6)=4.336, p=.000).

 Figure 6. The mean value for each challenge in relation to system age

Figure 7. Extra time spent on different activities and system age

Figure 8. How professionals with different roles spend their extra time

www.manaraa.com

115

11.5. Discussion

11.5.1. Wasted time due to Technical Debt (RQ1,4,5)

The first research question (RQ1) aims to address how much of the overall development

time is wasted because of TD. The striking results of the survey show that on average, the

respondents estimate that 36% of all software development time is wasted due to TD.

The wasted time varies somewhat in relation to the system age but the distribution of the

wasted time did not have a significant positive linear correlation with the system age

(RQ4). However, the analysis from the survey shows that the most wasted time (40.5%)

occurs in systems older than 20 years. Besides, even for new software systems with an

age of less than two years, 33.8% of the time is estimated as wasted.

 This result implies that TD is introduced early, and then it persists throughout the whole

software life cycle.

The findings from the survey show that there is no significant difference in how the

different roles estimate the overall wasted time (RQ6). However, the results show that

Software Architects and Experts estimate the highest average value of wasted time (41%)

and Developers estimate the lowest value of wasted time (35%). A possible explanation

for these results may be that Software Architects have higher awareness about the

complexity of the architectural design and, as identified in RQ2, a Complex Architectural

Design is a common source of the most negative impact on daily software development

work. Most of the interviewees explained that the magnitude of wasted time was

consistent with their perception of the overall wasted time. They also claimed that this

huge waste of time is detrimental to their business and its implications must be clearly

addressed and recognized within their organizations.

11.5.2. What type of TD generates the most negative impact on daily

development work (RQ2,4, and 5)

The second research question (RQ2) sought to determine what challenges generate the

most negative impact on the daily software development work, in order to understand and

weight different TD issues by potential severity. The overall survey results reveal that

Complex Architectural Design, closely followed by Requirement TD, generates the most

negative impact on daily software development work where the interviewees described

the characteristics of a complex architectural design as “One part of this is when you are

afraid to change something because something which is completely unrelated gets

corrupted through that. Then it is complex”. This finding broadly supports the work of

other studies in this area by describing that TD instances linked to inadequacies in the

software architecture are a major source of TD [17],[16], [149],[110]. Further, this study

investigated the impact of the age of the software and if different roles experienced the

challenges differently in the survey. According to these data, we can infer that the age of

the system has a significant impact on Architectural Complexity, Requirement TD and

Social interactions (RQ4). The impacts vary in relation to the system age (not linear), and

Complex Architecture Design was observed having the highest negative impact on

www.manaraa.com

116

systems with an age interval of 10-20 years and the lowest value for the age interval of

<2 years. The different role related findings report that Developers, Product and Project

managers, and Testers rate the Complex Architectural Design as having the most negative

impact (RQ5). Meanwhile, Software Architects interpret the Requirement TD to generate

the most negative effect. These findings raise intriguing questions regarding if Software

Architects are not prone enough to consider their own working area as the largest source

of TD. However, another possible explanation for this could be that they actually have

greater insight and understanding than others in this specific area. During the interviews,

one of the interviewees commented on this result as “Because software architects

understand the architecture better and need requirements to create it, and thereby seeing

the requirement as the biggest problem.”

11.5.3. Extra time is spent on activities (RQ3,5, and 6)

The third research question (RQ3) focuses on how much extra time is spent on different

activities due to the payment of TD interest. Both interviewees and survey respondents

placed significant emphasis on describing that considerable time is spent on

Understanding and/or measuring TD issues. This finding broadly supports the work of

other studies in this area where the need for active TD management on especially

architectural studies, is highlighted [97],[23],[150], [52]. Of interest is also the fact that

Understanding and/or measuring of Technical Debt does not change due to the system

age (RQ4), but is continuously at the highest level throughout the whole software life

cycle. From the data, it is apparent that Developers, Experts, Product and Project

Managers spend most extra time on Understanding and/or measuring the issues.

Meanwhile, Managers, Software Architects, and Testers spend most of their extra time

on the Management process of the issues (RQ6). This result could imply that different

roles need different types of support.

11.6. Threats to Validity and Verifiability

For verifiability reasons, we have made information available online, to support a full or

partial independent replication of the claimed contributions. All survey questions, used in

this paper, are available on the link https://zenodo.org/record/437597#.WNOXw1PhCpo.

The qualitative data derived from the survey are not based on measured or observed data

but on estimations made by the respondents. In future studies, we plan to include physical

measurements and observations, to create a stronger reliability of the data. The result of

this research may be affected by some threats to validity. Construct validity reflects what

extent the operational measures that are studied represent, what the researchers have in

mind and what is investigated according to the research questions [73]. To mitigate this

risk and to make sure that the respondents were considering the correct type of TD issues,

a short description of each type of TD was used and named as a challenge. Further, this

study could possibly suffer from internal validity when causal relationships were

examined as it affects our ability to explain the phenomena that we observed [66].

External validity focuses on to what extent it is possible to generalize the findings. There

is always a risk in surveys that the sample is biased and for this topic, a potential threat

www.manaraa.com

117

refers to the demographic distribution of response samples. As reported in Section III.A.1,

we mainly investigated companies from the Scandinavian area. To mitigate this validity

issue, we attempted to enlarge the respondent’s sample by inviting additional participants

globally via LinkedIn. Without replicating this study to other countries, it is not possible

to confirm that this study is generalizable. Reliability addresses whether the study would

yield the same results if other researchers replicated it. To mitigate this threat, we have

employed source triangulation, methodological triangulation and observer triangulation.

11.7. Conclusion

This is the first study surveying the estimated magnitude of the interest paid on the

accumulated TD in terms of perceived wasted time and effort. This study is based on a

survey with 258 respondents and group interviews with 32 practitioners. The study has

shown that software development practitioners estimate that 36 % of all development time

is wasted due to TD and that Complex Architectural Design and Requirement TD

generates the most negative impact on daily software development work. The most

wasted time is spent on Understanding and/or Measuring TD.

This study reveals that all roles are heavily affected by the interest of TD, but different

roles are affected differently. The study also shows that the age of the software affects the

amount of wasted time and the different activities where the time is spent on. These

findings have significant implications; organizations need to be aware of how much time

and resources they are spending on their interest of TD and to deliberately focus on the

remediation of their TD.

www.manaraa.com

118

www.manaraa.com

119

12. Impact of Architectural Technical Debt on

Software Development Work

The aim of this chapter is to investigate how practitioners perceive and estimate the

impact of Architectural Technical Debt during the software development process.

The negative consequences of Technical Debt is an area of increasing interest, and more

specifically the Architectural aspects of it have received increased attention in the last

few years. Besides the negative effects of Architectural Technical Debt on the overall

software product quality in terms of hindering evolution and causing high maintenance

costs, Architectural Technical Debt also has a significant negative impact on software

practitioners’ daily work. Although a great deal of theoretical work on Architectural

Technical Debt has been undertaken, there is a lack of empirical studies that examine the

negative effects of Architectural Technical Debt during the software development

lifecycle. This paper reports the results of an online web survey providing quantitative

data from 258 participants. The contribution of this paper is threefold: First, it shows that

practitioners experience that the Architectural type of Technical Debt has the highest

negative impact on daily software development work. Secondly, we provide evidence that

does not support the commonly held belief that Architectural Technical Debt increases

with the age of the software. Thirdly, we show that despite different responsibilities and

working tasks of software professionals, Architectural Technical Debt negatively affects

all roles without any significant difference between the roles.

12.1. Introduction

Technical Debt (TD) is recognized as a critical issue in today’s software development

industry [7]. Since this phenomenon has a negative effect on software companies, it is

important to assess and estimate the consequences of TD, both in terms of the wasted

time it causes and its negative effects on daily software development work.

Ward Cunningham [91] introduced the financial metaphor of TD to describe to

nontechnical product stakeholders about the need to identify the potential long-term and

far-reaching negative effects of the immature code that is implemented during the

software lifecycle.

A more recent explanation was provided by Avgeriou et al. [4] who describe TD as “In

software-intensive systems, technical debt is a collection of design or implementation

constructs that are expedient in the short term, but set up a technical context that can

This chapter has been published as:

Impact of Architectural Technical Debt on Daily Software Development Work –

A Survey of Software Practitioners

T. Besker, A. Martini, and J. Bosch

In Proceedings of the 43th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), 2017.

www.manaraa.com

120

make future changes more costly or impossible. Technical debt presents an actual or

contingent liability whose impact is limited to internal system qualities, primarily

maintainability and evolvability.” The reason for taking on TD can be defined as an

unintentional consequence resulting from the accumulation of non-optimal decisions over

time or, as in Cunningham’s definition, intentionally in order to get new functionality

running quickly [151].

Interest is the negative effects of the extra effort that has to be paid due to the accumulated

amount of TD in the software, such as executing manual processes that could potentially

be automated or expending excessive effort on modifying unnecessarily complex code,

performance problems due to lower resource usage by inefficient code, and similar costs

[7],[151]. The interest can also be described as “The additional effort that is needed to be

spent on maintaining the software because of its decayed design-time quality” [30].

Today, it has been well established from various studies that TD has a negative impact

on software development organizations by impeding evolution and causing high

maintenance costs due to internal software quality issues [18], [109], [22], [24], [103].

Left unmanaged, TD can result in significant cost overruns, severe quality issues, a

limited ability to add new features [50] and even result in reaching a crisis point when a

huge, costly refactoring or an entire replacement of the system needs to be undertaken

[5].

During development of large-scale software systems, the software architecture plays a

significant important role [18] and consequently a vital part of the overall TD relates to

sub-optimal architectural decisions and is regarded as Architectural Technical Debt

(ATD) [23].

ATD is primarily incurred by architectural compromises with the consequence of

immature architectural artifacts such as violations of best practices [93], consistency and

integrity constraints of the architectures, or implementation of immature architectural

techniques. These concerns chiefly result from the compromise of performance

efficiency, reliability, maintainability, reusability, and the ability to add new features [95].

Besides the negative effects ATD has on the overall software product quality, ATD also

has a significant negative impact on software practitioners’ daily work. It is, therefore,

important to understand when, and to whom, and in what way (in terms of generating

wasted time) ATD has a negative impact during the software development process. In

this study, the negative effects of ATD from a software lifecycle perspective are examined

by conducting a web survey of 258 industry practitioners. This paper has four key goals:

Firstly, there are no studies quantifying the interest in terms of how much (observed,

measured or estimated) time is wasted due to Architectural TD. We aim to understand

the level of negative effects ATD has on the daily software development work and

compare this level with negative effects due to other types of TD.

Secondly, we aim to understand if the level of the negative effects due to ATD correlates

with the estimated wasted development time during the software lifecycle.

Thirdly, the negative effect due to ATD is commonly believed to have an increasingly

negative impact with respect to the age of the software. This study aims to assess the

www.manaraa.com

121

extent to which the level of negative effects due to ATD, differs in relation to the age of

the system.

Finally, during the software lifecycle, several different professional roles participate, and

could subsequently be affected differently by ATD. To the best of our knowledge, no

previous studies have examined how different software professional roles perceive the

negative effects specifically generated by ATD. Therefore, this paper analyses the

variation in the negative impact of ATD on different software roles on their daily software

development work.

With regards to these four goals, we aim to answer the following research questions (RQ):

RQ1. Does ATD generate a negative impact on daily software development work?

RQ2. Does ATD negatively affect the amount of wasted development time?

RQ3. Does the Age of the software system affect the negative effects due to ATD?

RQ4. In what way are different software Roles affected by ATD?

The research questions will be answered using estimated survey data based on software

professionals’ perceptions. All survey respondents were experienced in software

development, and therefore, their estimates were likely to be formed by what they have

heard, observed, and experienced at their companies.

This study makes an original contribution to research, with respect to the existing body

of knowledge relating to ATD in the following important areas:

1. We provide an empirically based study on how practitioners estimate and

experience ATD within the software industry, based on empirical quantitative data.

2. We present results that confirm that ATD has a high negative impact on the

practitioners’ daily software development work.

3. This estimated wasted time by the practitioners does not correlate with the level of

negative impact generated by ATD, on daily software development work.

4. This study shows that the level of negative impact due to ATD is introduced early,

and thereafter remains during the whole software lifecycle. Based on evidence from

our survey, this study does not support the currently held belief that the negative

effects due to ATD increase with respect to the age of the system.

5. This study provides new insights into ATD research by showing that ATD has an

extensive negative effect on all software professional roles.

6. This study demonstrates to both practitioners and academics the importance of

paying more attention and effort to early remediate ATD during the software

lifecycle, in order to decrease the level of negative impact due to ATD on daily

software development work.

The remainder of this paper is structured in seven sections. The next section introduces

related work. In the third section, the research method is described. The fourth section

presents the analysis, and the results that are discussed in section five. Finally, in section

six, threats to validity are presented, while section seven concludes the paper.

www.manaraa.com

122

12.2. Related work

Research addressing the negative effects and impacts of TD in general is relatively well

represented within academia [150], but there is currently no academic research

quantifying how much software development time is estimated to be wasted due to

Architectural TD and if such wasted time varies in relation to the level of the experienced

and estimated negative effects generated by ATD. A previous study by Li et al. [96] states

that ATD concerns different types of roles in different ways; however, this current study

fills a gap in the literature by addressing to what extent different professional roles

perceive the negative effects of ATD and exploring how these negative effects vary

during the software lifecycle, in terms of the system age.

12.2.1. The importance of addressing ATD

ATD is an important component that needs to be addressed in the architecting process

[96], in order to make sure that the advantages of sub-optimal solutions do not lead to

large future payments of interest [127], [121], [32].

The importance of ATD has been highlighted in several studies with statements such as,

“the most encountered instances of technical debt are caused by architectural

inadequacies” by [17], “we found that architectural decisions are the most important

source of technical debt” by [16], and “because architecture has such leverage within the

overall development lifecycle, strategic management of architectural debt is of primary

importance” [28]. In our previous paper [5], we pointed out the risks when ATD grows

until the result of negative effect causes adding new business value so slowly that it

becomes necessary to conduct extensive refactoring or even rebuilding the complete

software from scratch.

12.2.2. Survey-based studies on TD

By reviewing other survey-based studies focusing on TD, we, in particular, found four

studies which bear a resemblance to this study.

First, Ernst et al. [16] conducted a survey within three large organizations, with 536

respondents (primarily software engineers and architects). This research included follow-

up interviews with seven software engineers. Similar to this study, one of their main

research areas focused on how much of the TD is architectural in nature. Their result

shows that “bad architecture choices” are the greatest source of TD. The study also

determines that the degree of architectural drift is related to system age. They found a

weak association between the age of the system and the perceived importance of

architectural issues where 89% of the respondents with software age ≥6 years agreed or

strongly agreed with the notion that architectural issues were a significant source of debt,

compared to 80% of those with newer systems (< 3 years). Compared to this study, our

study has a higher granularity of the age intervals and therefore provides a more detailed

description from a lifecycle perspective. In contrast to that study, our study also includes

the estimated wasted time due to ATD.

www.manaraa.com

123

Secondly, [17] conducted a web survey of Finnish software practitioners to determine

their level of TD knowledge, how TD manifests in their projects, and which of the applied

components of agile software development are sensitive to TD. Consequently, they found

that the most frequently indicated causes of TD were inadequate architecture and

inadequate documentation. This study was conducted in Finland and included 54

applicable responses. However, in these studies, we cannot find a quantification of the

interest, and furthermore, there are no examinations on the consequences ATD

specifically has for different software roles.

This paper is, to some extent, also related to our previous papers [144],[95], where we

study and compare several different TD types and address how TD negatively affects

different software quality attributes. However, even if the data are collected using the

same survey, this study focuses on the Architectural aspects of TD, and does not include

any effects on the software quality attributes and does not focus on other types of TD. By

only focusing specifically on ATD, this means that we can provide a more in-depth

analysis of the architecturally related issues of TD and provide more detailed statistical

analysis of the data.

12.2.3. Research on TD interest variations

Kazman et al. [116] have published a case study identifying and quantifying architectural

debts in an industrial software project, using code changes as a proxy for calculating the

interest. This study focuses on identifying the architectural roots of TD, meaning that the

study does not report the cost of interest, but instead targets quantifying the expected

payback for refactoring. These costs are, to some extent, based on estimated values from

the interviewed architects and, based on these assumptions, the expected benefit from the

refactoring is calculated. By comparison, this study has a focus on quantifying the interest

in terms of wasted time instead of on locating the roots of the architectural TD and the

expected benefit from the refactoring.

Falessi et al. [104] argue that the interest of TD can change over time, is non-linear and

has a probability of growing exponentially rather than linearly. By examining source

code, Nugroho et al. [142] state that the interest grows differently on a 10-year horizon,

depending on a star rating system for the software.

Xiao et al. [117] proposed an approach to identifying and quantifying ATD, focusing on

modeling the growth and on the quantification of the maintenance cost. In this study, the

interest is calculated using approximations based on the number of lines of code modified

and committed to fix bugs. This work has the limitation of only including the cost of

maintenance as ATD and primarily focuses on bug fixes.

Although some research has been conducted on addressing the growth of the interest,

there is a lack of empirical investigations quantifying the interest from an architectural

perspective in terms of wasted time.

www.manaraa.com

124

12.3. Methodology

The following sections describe the methods used for conducting the survey, the data

collection, and the data analysis.

12.3.1. Design of the Survey

The web survey was designed and hosted by the online survey service Survey Monkey.

The questions were a combination of optional and mandatory. To avoid bias in the survey,

the questions were developed as neutrally as possible, in such a way that one question did

not influence the response to the next, and clear, unbiased instruction was provided when

needed [78].

The survey was divided into two different sections in order to give the respondents a

context and understanding for each set of questions. The first draft of the survey was

tested by four industrial practitioners (developer, manager, project owner and software

architect) and by two Ph.D. students in order to evaluate the understanding of the

questions and the usage of common terms and expressions [77]. During this evaluation,

we also monitored the time that was needed. The survey was made accessible between

February and March 2016, and a reminder was sent out after two weeks to those who had

been specifically invited.

The survey was anonymous, and participation in the survey was voluntary. All invited

respondents were informed about the survey with an invitation text describing the motives

and goals of the study.

12.3.2. Data collection of survey data

The invitation to the survey was emailed directly to seven companies/partners within our

networks (located in Scandinavia, with an extensive range of software development), and

invitations were also distributed at software engineering-related networks on LinkedIn.

Across all these collaborators, 312 respondents began the survey, and 258 respondents

answered all questions. Due to this high completion rate (83%), the decision was made to

reject the unfinished questionnaires, according to guidelines by [78].

The first part of the survey gathered descriptive statistics to summarize the backgrounds

of the respondents and their companies. This data is compiled and presented in Table I.

The level of education of the respondents was relatively high, with 58% having a master’s

degree and 25% having a bachelor’s degree. The survey included respondents having

different professional roles, where 49% were Developers/Programmers/Software

Engineers (abbreviated to Developers in this paper), while 25% were Software Architects.

Approximately 78% of the Software architects and 59% of the Developers-

/Programmers/Software Engineers had more than 10 years of experience. The most

common size of the software development team included 6-10 members (36%), and the

majority (32%) systems were on average 5-10 years old from the initial design.

Nevertheless, a significant number (35%) of the respondents’ software was more than 10

years old. As indicated in Table I, the majority of the software systems were embedded

www.manaraa.com

125

systems (49%) and real-time systems (42%). However, for this specific question, the

respondents could select more than one option.

TABLE I - CHARACTERISTICS OF THE SAMPLE SURVEY

Individual data Company data

Experience

< 2 years 3,90%

2 - 5 year 10,50%

5 - 10 year 17,40%

> 10 years 68,20%

Education

Master’s degree 57,80%

Bachelor’s degree 25,20%

No Univ. education 6,20%

Other: 5,80%

Ph.D. degree 5,00%

Roles

Developer/Program/-

Software Engineer ** 49,20%

Software Architect 24,80%

Manager 6,20%

Project Manager 6,20%

Product Manager 5,0%

Expert 5,0%

Tester 3,50%

Gender

Male 89,90%

Female 8,50%

Other/no share 1,60%

Team size

1-5 members 23,30%

6-10 members 36,00%

11-20 members 15,90%

21-40 members 6,60%

> 40 members 18,20%

Software system type*

Embedded system 48.84%

Real-time system 41.86%

 Data management system 22.09%

System Integration 20.93%

Modeling and/or simul. 15.12%

Data analysis system 14.73%

Web 2.0 / SaaS system 8.53%

Other 8.53%

System Age

< 2 years 9,70%

2-5 years 23,3%

5-10 years 32,2%

10-20 years 28,3%

>20 years 6,6%

* More than one option was selectable, ** Abbreviated as Developer in this paper

The second part of the survey focused on questions based on the research questions

presented in Section I. In this part of the survey, the following survey questions (SQ) were

asked:

SQ1. Which of the following challenges generates the most negative impact on your

daily software development work? Please rank them from 1 to 11.

SQ2. How much of the overall development time is wasted because of these issues?

(Do not consider time spent fixing and managing the issues, just if they hinder you when

you add/change/understand the system).

For the first question SQ1, the listed categories and sub-categories (Complex

Architectural Design, Requirement TD, Testing TD, Source Code TD, Documentation

TD, Too many different patterns and policies, Dependency violations, Infrastructure TD,

Lack of reusability in design, Dependencies to external resources/software,

Uneasy/Tensed social interactions between different stakeholders) provided by [15] were

used to distinguish between different TD types. All these TD types were referred to as

“Challenges”, in order to provide the respondents with a more detailed clarification of the

TD type. This also mitigated the risk of misinterpretations and helped to make sure that

the respondents were considering the correct type of TD issue.

www.manaraa.com

126

In order to ensure a better construct validity of the survey, these same types of TD were

referred to in survey question SQ2. In SQ2, the estimation of the interest as wasted time

was specified in predefined percentage intervals of < 10%, 10-20%...80-90% and I don’t

know. In order to separate the time spent on management, the respondents were asked not

to include the time spent on fixing and managing the TD issues.

12.3.2.1. Data analysis of survey data

The data from the survey were analyzed using a quantitative method, by interpreting the

numbers obtained from the answers to the survey. All statistical analyses were carried out

using the software SPSS (version 22). Descriptive statistics were employed to organize

and analyze the qualitative data by using tables and charts.

The data were analyzed by studying the median, mean and standard deviation and also by

using the statistical methods Pearson’s R, the Pearson chi-square tests and ANOVA.

The Pearson's R method computes pairwise, determining the strength and direction of the

association between two metrics and can be used to measure a linear association between

two metrics.

The Pearson chi-squared tests are used for evaluating how likely it is that any observed

difference between the sets arose by chance, and the test of independence assesses

whether unpaired observations on two variables are independent of each other.

The one-way ANOVA was used to identify significant differences in mean values.

12.4. Results and Analysis

The following subsections present the analysis and results for the research question

presented in Section I, and the results are presented according to each research question.

12.4.1. Does ATD generate a negative impact on daily software

development work? (RQ1)

In order to understand the level of negative impact ATD has on the practitioners’ daily

software development work, this TD type was compared with several other TD types. The

survey respondents were asked to rank (score 1 = lowest negative impact, score 11 =

highest impact) a randomly ordered list of different TD types they consider to have the

most negative impact on their daily software development work. Each of these challenges

corresponds to different TD types which reflected the TD types that emerged from [15].

For example, if one of the TD types was ranked as generating the most negative effect by

one respondent, it was given a score of 11, and if second 10 and so on, and the score 1

was given if the negative impact was ranked as generating the least negative effect.

www.manaraa.com

127

Figure 1 Distribution of the negative effects due to ATD

The results of the level of negative effects due to ATD in terms of Complex Architectural

Design (CAD) are presented in Fig 1. From the data in this figure, it is apparent that the

number of respondents is increasing in relation to the perceived negative impact of ATD.

A total of 109 (42%) of all the respondents experience the three highest levels of negative

effect (score 9, 10 and 11) due to ATD. Only seven (2.7%) respondents perceive that

ATD has the least negative impact, while 34 (13.2%) respondents estimate ATD has the

most negative impact on their daily work.

In our previous study [144], we studied how several different types of TD have an

negative effect on the practitioners’ daily software development work. To understand the

impact of ATD, we have, in this study, compared the negative effects due to ATD with

data from the previous study.

Table 2 presents the summary statistics for each of the listed challenges in the survey,

based on the results of the other TD types presented in our previous study [144]. The

mean value for each TD type, is the average of the weights associated with the ranking

reported by the respondents in the survey.

Given these weights, a mean value was calculated for each TD type: this way, we could

see which challenges were ranked as having the most and least negative impact on the

daily software development work. Table 2 reveals that CAD (mean rank 7.27 with a

standard deviation of 2.9) generates the most negative impact on daily software

development work, both when studying the mean and the median values. The level of

negative impact due to a complex architectural design is closely followed by Requirement

Technical Debt (mean rank 7.23).

www.manaraa.com

128

TABLE 2 - MEAN AND MEDIAN OF THE RANKINGS FOR TD TYPES

Challenge Mean Median

Complex Architectural Design 7,27 8

Requirement TD 7,23 8

Testing TD 6,80 7

Code TD 6,36 7

Documentation TD 5,98 5,5

Many patterns and policies 5,76 5

Dependency Violations 5,71 6

Infrastructure TD 5,59 5

Lack of reusability 5,38 5

Dependencies to externals 5,19 4

Social TD 4,73 4

12.4.2. Does ATD negatively affect the amount of estimated wasted

development time? (RQ2).

This research question focuses on the interest in terms of how much of the overall

software development time is wasted due to paying the interest of ATD. In our previous

paper [144], we reported that the respondents estimate that 36% of all software

development time is wasted because of TD in general, with the standard deviation of

17.8%.

In this specific research question, we seek to confirm the commonly held belief in a

correlation between a higher level of negative effect and a higher amount of wasted

development time.

To evaluate if there is such a significant correlation between the estimated overall wasted

development time and the experienced level of negative impact due to ATD, we have

correlated these two datasets.

When testing the belief that the estimated wasted time increases in relation to the level of

negative impact generated by a complex architectural design, in terms of ATD, we

calculated the average estimated wasted time within each of the levels of the negative

impact (the same ranking scale as in Section IV.A, were used where level 1 = lowest

negative impact and level 11 = highest negative impact due to ATD).

www.manaraa.com

129

Figure 2. Estimated wasted software development time for each level of negative effects

due to ATD

Fig. 2 represents a boxplot for each level of the negative effect due to ATD. In this figure,

the estimated wasted time is plotted and compared using the different levels of negative

impacts on the daily software development work due to ATD.

This boxplot represents the minimum and maximum range values, the upper and lower

quartiles, and the median for each level. From the boxplot, we can see that the estimated

wasted time is relatively consistent within the different levels of negative impact. The

maximum estimated wasted time (41%) was found within level 4 of the negative impact

and the minimum wasted time (30%) was found in the first and the third level of negative

effects due to ATD.

In Fig. 3, the differences of distributions of the estimated wasted time in relation to the

mean value of the negative effect generated by ATD are graphically visualized.

Respondents who estimate they are wasting less than 10% of their working time due to

TD, estimate the lowest negative effect due to ATD (mean value 4.71) and respondents

estimate they are wasting the most wasted time (80-90%) estimate the second lowest

negative effect (mean value 6.0).

www.manaraa.com

130

Figure 3. Mean value of the negative effect due to ATD in relation to the estimated wasted time

The analysis determined by one-way ANOVA showed that the estimated wasted time was

not statistically significantly different between the levels of impact.

Furthermore, to evaluate if there is a linear correlation between the level of the negative

impact caused by ATD and the wasted time, we used the Pearson correlation method.

These two data series (we used the average wasted time within each interval), returned p-

value 0,084, which showed no support for a linear correlation between the estimated

wasted time and level of negative impact due to ATD.

Overall, this analysis did not confirm a statistically significant correlation between the

estimated wasted time and the level of experienced negative impact ATD has on the

respondents’ daily software development work. ‘

This result indicates that the respondents who stated that ATD generates the most negative

effects (rank 11) on their daily work, did not waste significantly more or less amount of

time compared to the respondents stating that ATD generates less negative effects.

In summary, the perceived negative effects due to ATD did not affect the respondents’

estimated wasted time and, based on evidence from our survey, this study does not

support the currently held belief that the negative effects due to ATD significantly

correlates or linearly increases with respect to the age of the system.

12.4.3. Does the Age of the software system affect the level of negative

effects due to ATD? (RQ3)

There is a commonly held belief that the negative effects of a complex architectural

design, in terms of ATD, increase with the age of the software, commonly referred to as

software aging [37].

www.manaraa.com

131

In order to assess whether the negative effects of ATD varies during the software

lifecycle, we used a statistical cross-tabulated analysis showing the negative effects

caused by ATD (using the same ranking scale as in Section IV.A) on the daily software

work in relation to different software age intervals of < 2 years, 2-5 years, 5-10 years, 10-

20 years, and > 20 years.

Figure 4. Distribution of negative effect (mean values) for each software age interval

To calculate the mean value for the ages of the software, the average of the reported age

interval stated by the respondents in the survey was used. For example, if the age was

reported within the interval of < 2 years, the average age was set to 1 year, and for the

interval 5-10 years, the average age of 7.5 years was used. For systems reported > 20

years the age of 25 was used.

The first set of analyses examined the negative effects due to ATD for each software age

interval and, as shown in Fig. 4, the mean values of the negative effect somewhat vary

over the different age intervals. What is interesting about the data in this figure is that, for

software which is less than two years, the negative impact of ATD has already a relatively

high negative impact on the respondents’ daily software work, with a mean value of 6.56.

This result implies that ATD is introduced quite early during the software lifecycle and

is also generating extensive negative effects for systems with ages less than two years.

After the first two years, the negative effects have a growing trend up to the peak (mean

value 8.08) in the age interval of systems with ages between 10 and 20 years. For systems

older than 20 years, the negative impact somewhat decreases (mean value 7.18).

To further evaluate if there is a linear correlation between the system age and level of

negative impact, we used the Pearson correlation method. Despite the visual impression

in Fig. 4 somewhat indicating a small increase in the software age of the system, our

statistical analysis of the two data series (we used the average age within each year

interval) did not return any indication of a significant linear correlation between the

system age and the level of negative effects due to ATD (r(256)=,127, p=0,041). The

boxplot in Fig. 5 captures the difference in software age in relation to each level of

www.manaraa.com

132

negative impact due to ATD. Looking at the comparison of median and percentiles among

the different levels of negative impact, we cannot see a significant difference with regards

to the age distribution, besides for level 10 (median 15 years) and level 5 (median 5.5

years). The mean values of the system age vary between a minimum of 6.1 years (for

level 5) and a maximum of 12.1 years (for level 10) among all the different levels. To

evaluate if the software age is significantly different among the different intervals, a one-

way ANOVA test was used. This test revealed that the age of the system is significantly

different among the different levels of impact (F(10,247)=1,928, p=0.042). Furthermore,

the Pearson chi-square test of dependence showed that the two factors (system age and

level of negative impact) are not dependent, which means that there is no significant

relationship between the age of the system and the experienced level of negative effects

due to ATD. Hence, we did not find any statistically verifiable evidence showing a

correlation between the age of the software and the level of negative effects generated

due to ATD on the respondents’ daily work. The result shows that, for young software

systems with an age of less than two years, the negative impact generated by ATD is also

quite extensive. Based on evidence from our survey, this study does not support the

currently held belief that the negative effects due to ATD, significant correlates or linearly

increases with respect to the age of the system.

Figure 5. Age of the software for each level of negative effects due to ATD

12.4.4. ATD impacts on different Roles (RQ4)

In our previous study [144], we found that, among all different TD types, ATD has the

greatest negative impact on the daily software development work for all the different

roles. In this section, we explore if the different professional software roles (Developer,

Software Architect, Manager, Project Manager, Product Manager, Expert, and Tester)

experience the negative effects generated by ATD, on their daily software development

work differently. This research question uses the same ranking scale as in Section IV.A,

www.manaraa.com

133

where level 1 represents the lowest negative impact and level 11 represents the highest

negative impact generated by ATD. By examining the mean values in Fig. 6, it is evident

that Project Managers (mean value 8.31) and Testers (mean value 8.11), estimate the

highest negative impact due to ATD whereas Experts (mean value 6.46) and Software

Architects estimate the lowest value of the negative impact of ATD (mean value 6.67).

Figure 6. Different roles’ level of negative effects due to ATD

Figure 7. Distribution of different roles’ level of negative effects due to ATD

To graphically visualize the differences of distributions for each negative impact level,

Fig. 7 presents a boxplot for each of the roles. From this boxplot, we can see the variation

and distribution of how the roles estimate the negative impact due to ATD.

When explicitly tested if the roles experience the negative effects due to ATD differently,

a one-way ANOVA test showed, somewhat surprisingly, that there were no significant

differences (F(6,251)=1,16,p=0.310) between how the roles are negatively affected by

ATD.

www.manaraa.com

134

One unanticipated finding was that five of the Software Architects (8%) stated that ATD

generates the least (level 1) negative impact on their daily work. Meanwhile, 19% of the

Project Managers perceive that ATD has the highest level of impact on their daily

software development work.

The result of this research question indicates that all different software professional roles

are extensively negatively affected by ATD.

12.5. Discussion and limitations

This section presents and discusses the findings and the implications of the research

questions presented in Section I.

12.5.1. The negative impact on daily software development work due to

ATD (RQ1)

Several previous studies have described that ATD has a severe negative impact on

software development in general, but there is, to the best of our knowledge, no research

specifically focusing on quantifying the level of negative impact ATD has on

practitioners’ daily software work.

The first research question (RQ1) aims to address the level of the negative impact ATD

has on the respondents’ daily software development work. The result shows that ATD is

ranked as having a high negative impact on the practitioners’ daily software development

work. Moreover, compared to other types of TD [144], this survey reveals that Complex

Architectural Design, closely followed by Requirement TD, generates the most negative

impact on daily software development work. This finding broadly reflects the findings

from other studies in this area by describing that TD instances linked to inadequacies in

the software architecture are major sources of TD [17], [16], [149], [110].

12.5.2. Does ATD negatively affect the amount of wasted development

time? (RQ2).

The second research question (RQ2) focuses on how much of the overall software

development time is estimated to be wasted because of ATD and also to evaluate the

commonly held belief of a correlation between this estimated wasted development time

and the experienced level of negative impact generated by ATD.

A common belief exists that there is a correlation between the estimated wasted software

development time and the negative effects due to ATD, but this study provides empirical

evidence which does not support such belief. The level of negative effects generated by

ATD thus does not have a significant correlation between the amount of estimated wasted

software development time. In contrast, the estimated wasted time did not differ

significantly among the different levels of negative effects generated by ATD. However,

the estimated wasted time varies in relation to the level of negative effects due to ATD,

but the distribution of the wasted time did not have a significant increase (or decrease)

linear correlation with respect to the different levels of negative impacts.

www.manaraa.com

135

Contrary to popular belief, how negatively respondents estimate the impact due to ATD

proves to be a poor indicator of wasted software development time. Therefore, studies

asking software professionals how often they encounter ATD, how they perceive the

importance of ATD, or how they experience the negative impact due to ATD, should be

carefully examined. This is because our research shows that there is no correlation

between the level of negative effects due to ATD and the amount of the estimated wasted

time.

Further research should be undertaken to investigate if other types of TD (besides ATD)

have a significant correlation to the estimated wasted time to better understand the

negative impact different TD types have on the wasted software development time.

12.5.3. Does the Age of the software system affect the negative effects due

to ATD? (RQ3)

The third research question (RQ3) in this study sought to determine if there is a correlation

between the level of negative impact generated by ATD and the age of the software.

It is a commonly held belief that the negative effects generated by ATD increase over

time within the software lifecycle. However, the findings of this study do not support such

a belief. The negative effects due to ATD vary in relation to the system age (but not

linear), and were observed as having the highest negative impact on software with an age

interval of 10-20 years and the lowest value for the age interval of < 2 years.

What is interesting about the result is that for young software with an age of less than two

years, the negative impact generated by ATD is also quite extensive. A possible

explanation for these results may be that ATD is introduced early in the software, and

then persists throughout the whole software lifecycle. This result implies that investment

in refactoring must be continuous from the conception of the system in order to keep the

negative effect generated by ATD at a future low level.

12.5.4. ATD impact on different Roles (RQ4)

The fourth research question (RQ4) explores the negative effects ATD has on different

types of professional software roles. Both technically oriented professionals such as

developers, testers, and experts and also professionals working within a management area

of the software, such as software architects, product and project managers, participate in

the software development process during the software lifecycle. All these roles have

different responsibilities and tasks and could subsequently potentially be differently

affected by ATD. The statistical analysis could not confirm the negative impact generated

by ATD among the roles as significantly different. This study confirms that ATD has an

extensive negative effect on all software professional roles within the companies.

12.5.5. Verifiability and Limitations

For verifiability reasons, we have made information available online to support a full or

partial independent replication of the claimed contributions. All survey questions used in

www.manaraa.com

136

this paper are available on the link https://zenodo.org/record/230742#.WG34rP7rupp.

The reported findings are subject to at least two limitations. First, the majority of the data

from the invited companies for the survey and the interviewed companies were gathered

in Scandinavia. Thus, the results might be different in other geographical and cultural

areas. As a result, further work is needed to replicate the results in other geographical

areas and software development cultures. Second, the qualitative data derived from the

survey are not based on measured or observed data but rather on estimations made by the

respondents. Even if there was a high degree of agreement across the respondents’

estimations, this might create bias for the results in terms of their credibility and

correctness. Assessment of TD is, however, not an exact science; it all depends on how

you calculate it [152]. Therefore, as a future study, we plan to investigate this area further,

to also include physical measurements and observations, in order to create a stronger

reliability of the data.

12.6. Threats to validity and Verifiability

The result of this research may be affected by some threats to validity, such as construct

validity, internal validity, external validity, and reliability.

Construct validity reflects to what extent the operational measures that are studied

represent what the researchers have in mind, and what is investigated according to the

research questions [73]. To mitigate this risk and to make sure that the respondents were

considering the correct type of TD issues, a short description of each type of TD was used

and named as Challenge.

This study could potentially suffer from internal validity when the causal relationships

were examined, as it affects our ability to accurately explain the phenomena that we

observed [66].

External validity focuses on to what extent it is possible to generalize the findings. There

is always a risk in surveys that the sample is biased and, for this topic, a potential threat

refers to the demographic distribution of response samples. As reported in Section III.A.1,

we primarily investigated companies from the Scandinavian area. To mitigate this validity

issue, we attempted to enlarge the respondents’ sample by inviting additional participants

globally via LinkedIn. Without replicating this study to other countries or regions, it is

not possible to confirm that this study is generalizable.

Reliability addresses whether the study would yield the same results if other researchers

replicated it. To mitigate this threat, we have employed observer triangulation, which

means that all authors participated in the analysis.

12.7. Conclusion

Architectural Technical Debt is evidently detrimental to software companies, and it is

important to assess and estimate its negative consequences on daily software development

work. The main goal of this study was to determine how practitioners within the software

industry perceive and estimate the negative effects due to ATD in terms of the level of

negative effects.

https://zenodo.org/record/230742#.WG34rP7rupp

www.manaraa.com

137

To the best of our knowledge, this is the first study that empirically surveys the estimated

detrimental impact of ATD in terms of estimated wasted time and effort. This study is

based on a survey with 258 respondents. The study has shown that ATD has a high

negative impact on the practitioner’s daily software development work. The research has

also shown that the amount of wasted time does not have a statistically significant linear

correlation with how the practitioners experience the level of negative effects due to ATD.

Practitioners waste time statistically independently of how they experience the negative

impact of ATD.

Furthermore, this study reveals that ATD has an extensive negative effect on all software

professional roles and, additionally, our study provides evidence which does not appear

to support the commonly held belief that the ATD increases with the age of the software,

as this study did not find any statistically verifiable relationship between the age of the

software and the level of negative effects generated by ATD. The result shows that ATD

is introduced early and persists during the whole software lifecycle.

These findings have significant implications, advocating for the important awareness of

how much valuable time and effort is wasted due to ATD. These findings provide strong

empirical confirmation that software companies need to invest in continuous refactoring

from the conception of the system in order to keep the negative effect generated by ATD

at a future low level.

www.manaraa.com

138

www.manaraa.com

139

13. Software Developer Productivity Loss Due

to Technical Debt

This chapter aims to explore the consequences of TD in terms of reported wastage of

software development time.

Software companies need to deliver customer value continuously, both from a short- and

long-term perspective. However, software development can be impeded by technical debt

(TD). Although significant theoretical work has been undertaken to describe the negative

effects of TD, little empirical evidence exists on how much wasted time and additional

activities TD causes. This study investigates on which activities this wasted time is spent

and whether different TD types impact the wasted time differently. This study reports the

results of a longitudinal study surveying 43 developers and including16 interviews

followed by validation by an additional study using a different and independent dataset

and focused on replicating the findings addressing the findings. The analysis of the

reported wasted time revealed that developers waste, on average, 23% of their time due

to TD and that developers are frequently forced to introduce new TD. The most common

activity on which additional time is spent is performing additional testing. The study

provides evidence that TD hinders developers by causing an excessive waste of working

time, where the wasted time negatively affects productivity.

13.1. Introduction

To survive in today's fast-growing and ever-changing business environments, large-scale

software companies need to deliver customer value continuously, from both a short- and

long-term perspective.

During the software development lifecycle, companies need to consider the costs of the

software development process in terms of the required time and resources. In general,

software companies strive to increase the number of implemented features, the overall

software quality, and the overall efficiency and, at the same time, decrease the costs in

each lifecycle phase by reducing time and resources deployed by the development teams.

However, software development productivity can be hindered by what is described as

technical debt (TD). TD is recognized as a critical issue in today’s software development

industry [7] and, left unchecked in the software, TD can lead to large cost overruns,

causing high maintenance costs due to internal software quality issues

[95],[18],[109],[22],[24],[103],[153] and an inability to add new features [50] and even

lead to a crisis point when a huge, costly refactoring or a replacement of the whole

software needs to be undertaken [5].

This chapter has been published as:

Software Developer Productivity Loss Due to Technical Debt - A replication and

extension study examining developers’ development work

T. Besker, A. Martini, and J. Bosch

Journal of Systems and Software, vol. 156, pp. 41-61, 2019.

www.manaraa.com

140

The TD metaphor was first coined at OOPSLA ‘92 by Ward Cunningham [91] to describe

the need to recognize the potential long-term negative effects of immature code that occur

during the software development lifecycle. Cunningham used the financial terms debt and

interest when describing the concept of TD:

 “Shipping first-time code is like going into debt. A little debt speeds development so long

as it is paid back promptly with a rewrite. Objects make the cost of this transaction

tolerable. The danger occurs when the debt is not repaid. Every minute spent on not-

quite-right code counts as interest on that debt.”

An additional, and more recent, definition was provided by Avgeriou et al. [4] who define

TD as: “In software-intensive systems, technical debt is a collection of design or

implementation constructs that are expedient in the short term, but set up a technical

context that can make future changes more costly or impossible. Technical debt presents

an actual or contingent liability whose impact is limited to internal system qualities,

primarily maintainability and evolvability.”

This debt potentially has to be repaid with interest in the long term. Interest is the negative

effect in terms of the extra effort and activities that have to be paid due to the accumulated

amount of TD in the software. This may include executing manual processes that could

potentially be automated or expending excessive effort on modifying unnecessarily

complex code or performance problems due to lower resource usage caused by an

inefficient code and similar costs [7],[151].

Software suffering from TD, however, forces the developers to perform additional time-

consuming activities to be able to continue the development work with the goal of

delivering high-quality software. Accordingly, an extensive amount of valuable

developing working time is wasted when developers are forced to execute these additional

activities due to TD in their software systems, and thus this wasted time negatively affects

the efficiency and undermines the productivity of software developers. This study aims

at increasing the understanding of the negative effects of experiencing TD by using

weekly reporting of the wasted time over time since it is essential to have informative and

cost-effective indicators to evaluate aspects of the software development processes and

its product quality [154].

There are different ways of measuring software development productivity [46], and

productivity is typically defined as the output divided by the effort required to produce

the output. Following guidelines by Fonseca [155], we specify the operational definition

[156] of developer productivity by examining the developers’ reported amount of wasted

time using weekly web surveys over seven weeks. Since we can determine that the

amount of wasted time has a negative impact on software development duration, we

define productivity as the ability to deliver high-quality customer value in the shortest

amount of time. This line of reasoning implies that a decrease in the amount of wasted

software development time would lead to an increase in software development

productivity.

Examining and quantifying the negative effects of TD plays an important role for both

academia and software management practitioners in understanding and raising awareness

of the magnitude of the negative effects TD has on developers’ productivity. This

www.manaraa.com

141

knowledge can also help to improve software development efficiency and strategies for

TD management.

The results of this study show that TD has a negative effect in terms of an extensive

amount of developer working time (on average 23%) wasted due to experiencing TD

during the software development lifecycle. This study also demonstrates the variance of

the wasted time across the sample and, furthermore, that due to the presence of TD during

the development work, developers most commonly have to perform additional testing,

source code analysis, and refactoring. This study also shows that, in a quarter of the

occasions where developers encounter TD, they are forced to introduce additional TD due

to the already existing TD.

To the best of our knowledge, this is the first study to undertake a longitudinal

examination of software developers reporting their wasted time due to TD and examining

which additional activities the wasted time is spent on and also what type of TD caused

the wasted time, which also adds methodological novelty to the results.

The remainder of this study is structured in seven sections: Section 2 describes the

research questions, and Section 3 introduces related work. Section 4 describes the

research methods in detail. Section 5 presents the research results. Sections 6 and 7

discuss the findings and threats to the validity of the study, respectively. Finally, in

Section 8, conclusions and recommendations for future work will be presented.

This manuscript was originally published at the 1st International Conference on Technical

Debt, held jointly with ICSE [157]. The delta of this manuscript over the prior published

paper is two-sided. First this manuscript is an extension study of a previous paper, and

secondly, this study is a replication study of the original study.

This new manuscript includes a value-added extension to the previous conference version

of the study since that version was restricted due to space limitations. This manuscript

has been extended to include additional research questions and, consequently, new

findings to these research questions. The related Research section has been extended to

be broader and more carefully cover additional related research publications. In the

Methodology section, the novel approach of using a longitudinal research method is

described in greater depth. In the Results section, we have added more subjects and more

rigorous analysis by including more examples and explanations, which may increase our

confidence in the conclusions. In this extended version of the previous paper, several of

the figures and tables have also been refined to strengthen further the readability and

understandability of the results. This manuscript also includes a validation by replication

of the findings focusing on the amount of wasted time and the different encountered TD

types and which additional activities this time is spent on. This replication phase confirms

and strengthens the results derived in the original study. Furthermore, this manuscript

includes additional in-depth analysis of how the results can be applied in practice, both

by practitioners and by researchers. Finally, this manuscript also includes a potential

direction for future work.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7592594

www.manaraa.com

142

13.2. Research Questions

The goal of this study, phrased as inspired by the goal-question-metric approach provided

by Basili [158] is: “To analyze the consequences of TD, for the purpose of understanding,

with respect to the negative effect TD has on software productivity, from the point of

view of software developers and their managers, in the context of software development.”

Based on this goal and more specifically, this study will examine the following six

research questions:

RQ1: In what ways does technical debt waste developers’ working time?

RQ1.1: How much of software developers’ overall development time is wasted due to

technical debt?

RQ1.2: Is there a significant difference between the wastage of working time due to

technical debt in relation to different developer characteristics?

In this regard, the characteristics refer to different variables such as years of experience

as a developer, gender, level of education, programming language, company, the age of

the software, and type of software.

RQ1.3: Are there different patterns among the distributions of the wasted time over the

calendar period?

The objectives of research question RQ1 (RQ1.1, RQ1.2, and RQ1.3) are to understand

how much of software developers’ overall development time is wasted due to TD and

whether the distribution of the wasted time varies with developer characteristics and

follows any specific distribution patterns.

RQ2: Upon which extra activities is the wasted time spent?

RQ3: In what ways do different technical debt types affect the amount of wasted

time?

RQ4: How often are developers forced to introduce new technical debt due to

already existing technical debt?

RQ5: Is there a difference in the awareness of technical debt between developers

and their managers?

The objective of this research question focuses on the awareness of the negative

consequences TD has on the daily software development work and if (and in what way)

the developers and managers consider the insight into the wasted time valuable.

RQ6: What are the challenges in tracking the interest of technical debt?

13.3. Related Work

In this section, we discuss related work concerning software productivity, the

quantification of negative effects due to TD, how TD affects the software development

productivity, and, finally, the term contagious debt.

Software productivity has been a frequently discussed subject since the beginning of

software engineering research [159],[44]. In software engineering, productivity is

www.manaraa.com

143

commonly defined, from an economic point of view, as the effectiveness of productive

effort measured in terms of the rate of output per unit input [44],[159],[160].

Productivity is also a measure of the quality of an output relative to the input required to

produce the output. Productivity is a combined measurement of efficiency and quality.

There are several constraints that can influence the software development productivity in

general, such as cost, schedule, and scope [161]. Furthermore, Oliveira et al. [159] state

that researchers have not yet reached a consensus on how to measure productivity

properly in software engineering. However, as mentioned in the Introduction, in this study

we have decided to focus on the productivity in terms of the amount of wasted software

development time because developers are hindered during their daily software

development work by experiencing TD within their software.

Sedano, Ralph, and Péraire [162] echo this notion by stating that “waste is any activity

that produces no value for the customer or user” and reducing this waste of time would

improve the software development productivity. In their study, they identified that

software suffering from TD can lower the developer’s productivity both in terms of

wasted time and by causing reworking and an extraneous cognitive load.

Ernst et al. [16] surveyed three large organizations with 536 respondents and seven

follow-up interviews. Based on the responses from this survey, they found that

architectural decisions are the most important source of TD. This study based its

conclusion on a survey in which practitioners state their perception of how the

respondents perceive TD. In this study, we cannot find a quantification (reported or

estimated) of the interest; there is also no explanation regarding the types of activities on

which the extra time is spent.

Martini and Bosch [163] have studied the interest growth and found that some

Architectural TD items are contagious, causing the interest to be not only fixed but

potentially compounded, which leads to the hidden growth of interest with the potentiality

of growing exponentially. Even if that study included some cases, the study did not track

to the introduction of additional TD using the same level of granularity as this study.

Kazman et al. [116] present a case study for identifying and quantifying architectural

debts in an industrial software project, using code changes as a proxy for calculating the

interest. This study focuses on identifying the architectural roots of TD, meaning that the

study does not address the cost of interest but instead aims to quantify the expected

payback for refactoring. Similar to the abovementioned related research, these costs are,

to some extent, based on estimated values from the interviewed architects, and, based on

these assumptions, the expected benefit from the refactoring is calculated.

This study is, to a certain extent, related to a previous study [144], which also addresses

the amount of wasted software development time. That previous study was based on 32

interviews and a web survey of 258 software practitioners addressing software

practitioners’ estimations of wasted time due to TD and also the estimations of which

types of TD have the most negative impact on daily software development work and on

which different activities the respondents estimate they spend this wasted time. The

results of that study show that software practitioners (from several different roles)

estimate that, on average, 36% of all development time is wasted due to TD and that

www.manaraa.com

144

Architectural TD and Requirement TD have the most negative impact, and that

practitioners perceive that the majority of time is wasted on understanding and/or

measuring the TD.

Later on, when studying the time spent managing TD, we found, in a study by Martini et

al. [164], that the development time dedicated to managing TD is estimated to be, on

average, 25% of the overall development time and generally not performed systematically

The novelty of this study’s approach compared to the previous studies lies in the selection

of a longitudinal research methodology adopting a different sampling strategy specifically

focusing on developers and their reported experiences over time (compared to single

estimates) by collecting repetitive observations of the same variables (e.g., wasted time)

on more than one single occasion [67] and over seven weeks. The uniqueness of this

extended study is also that this study validates several of the findings by conducting an

additional replication study using a new and independent data set.

Compared to the previous studies, this original study had a duration of 10 months, with a

longitudinal data collection phase, collecting more than 470 reported data from 43

software developers and 16 supplementary follow-up interviews with both developers

and their managers. Additionally, this study also reveals new insights and interpretations

on how, developers are frequently forced to introduce new TD caused by existing TD

and, furthermore, reports the negative effect TD has on developers’ work in terms of

challenges and benefits, from both developers’ and managers’ sides.

To date, there is limited research available that attempts to quantify empirically how TD

negatively affects software development productivity. The existing literature relating to

TD and productivity states that TD becomes a constant drain on software productivity

[165],[15], which leads to a slowing of the development and negatively affects

productivity [7],[42],[111]. To the best of our knowledge, no previous study has

employed a longitudinal empirical study (based on reported data) with the aim of

understanding and quantifying how productivity (in terms of wasted software

development time) is affected by TD. Our study also addresses how frequently developers

are forced to introduce new TD. This topic relates to a previous study by Martini and

Bosch [163] in which they found that some TDs cause other parts of the system to be

contaminated with the same problem, which may lead to the non-linear growth of interest,

called contagious debt.

13.4. Methodology

Triangulation is important in increasing the precision of empirical research in terms of

taking different perspectives toward the studied object and thus providing a broader view

[73]. To increase the validity and the reliability of the result, we have used source,

observer, and methodological triangulation and also replicated the study as a last phase.

Source triangulation refers to using several sampling strategies to ensure that data are

gathered at different times and in different situations. The use of more than one source of

data makes the conclusion more credible since it can be drawn from several sources of

information [73], [89]. In this study, we used both interviews and surveys when collecting

the data.

www.manaraa.com

145

Observer triangulation refers to using more than one observer to gather and interpret data

[73], [89]. This type of triangulation was achieved in this study, where at least two of the

involved researchers worked together with different roles during the studies, thus

enabling peer debriefing and analysis of the collected data.

Methodological triangulation refers to combining different types of data collection

methods and was achieved in this study by combining both qualitative and quantitative

methods [73], [89].

13.4.1. Research Design

This study is based on a longitudinal study with supplementary follow-up interviews,

carried out to examine the negative impact TD has on software development, from

September 2016 to June 2017. This research design was divided into seven phases, as

visualized in Fig. 1. The following sections describe each phase and the related research
methods used in each stage.

Figure 1. Visualization of the research design and research method used in each phase

13.4.1.1. Contextual Analysis and Design

First, the study was presented and discussed during a workshop with software

practitioners from seven software companies within our network and with an extensive

range of software development. This study’s selection of participating companies was

carried out with a representative convenience sample of software professionals from our

industrial partners.

This phase acted as a guide for collecting information about the studied context and

selecting the most appropriate research model to use. The research team decided to base

the research model on a longitudinal study together with supplementary follow-up

interviews.

www.manaraa.com

146

13.4.1.2. Preparation

Secondly, an invitation to participate in the study was emailed to the participants in the

workshop. Following the guidelines provided by Ployhart and Vandenberg [67], to those

six companies (43 developers in total) who agreed to participate in the study, we sent out

educational material intended to minimize inter-observer (all researchers communicate

the same knowledge) and inter-instrument (all participants receive the same information)

variability.

This educational material included different topics such as TD definitions, different terms

commonly related to TD (e.g., debt, principal, and interest), TD Landscape (also

illustrating what TD is not), and, finally, a short description of the different TD types.

Since the definition of TD is very important and sets the context for the entire study, we

specifically focused the educational material on guiding the respondents to fully

understand the basic concepts of TD. In the material, we, therefore, presented three

different citations to describe what is meant by TD. First, Ward Cunningham’s definition

was [91] offered: “Shipping first time code is like going into debt. A little debt speeds

development so long it is paid back promptly with a rewrite… The danger occurs

when the debt is not repaid. Every minute spent on not-quite-right code counts as interest

on the debt,” followed by Steve McConnell’s definition of TD [19]:“A design or

construction approach that’s expedient in the short term but creates a technical context in

which the same work will cost more to do later than it would cost to do now (including

increased cost over time).” Furthermore, a third, shorter, definition was used: “Technical

debt is a non-optimal solution in code (or other artifacts related to software development)

that gives a short-term benefit but cause an extra long-term cost during the software life-

cycle.”

13.4.1.3. Data Collection—Longitudinal study

A longitudinal study is a research method that involves repeated observations of the same

variables (e.g., time usage) on more than one occasion [67], and is conducted over time

[86]. The incentive for using a longitudinal research method in this study has two

principal aspects:

a) to increase the precision of reporting experienced data (in our case, not based on single

estimations and single perceptions). This was achieved by studying each respondent over

several weeks where the reported data could be compared. Such designs are called

repeated measures designs [67], and

b) to examine the respondents’ changing responses over time: Longitudinal designs have

a natural appeal for the study of changes associated with development or changes over

time. They have value for describing both temporal changes and their dependence on

individual characteristics [67]. The longitudinal research method increases the precision

of measuring and reduces inter-individual variation. This method also examines the

individual’s changing responses over time and provides a value for describing both

temporal changes and their dependencies on individual characteristics [67].

www.manaraa.com

147

To sustain the commitment of the respondents, before starting the study, all respondents

had agreed on their continuing participation with both their managers and ourselves.

The quantitative data collection during the longitudinal study was designed and hosted by

an online survey service called Survey Monkey. This data collection phase included three

different steps.

The first step was a start-up survey gathering descriptive statistics to summarize the

backgrounds of the respondents and their companies.

Based on guidelines from [108] and to identify the population from which the subjects

and objects are drawn, we studied compiled data for the participating respondents in the

study. Juristo and Moreno [166] state that “the more homogeneous the elements examined

in the surveys are, the better the results obtained will be,” and, as illustrated in Table 1,

all the respondents were relatively experienced as software developers: 56% had more

than 10 years of experience, and only 7% had fewer than 2 years of experience. All

respondents have a university-level education, where 82% have a master’s degree. The

age of the software with which the respondents worked varied, but only 2% worked with

software with an age of less than 2 years, and 44% of the developers worked with software

within the age range of 5-10 years. The most common system type was an embedded

system, and the most common programming languages were C (40%) and C++ (21%).

The second step in the longitudinal phase used repeated measures [67]. This stage was

designed to collect reported data from 43 software developers more than 14 survey

occasions (i.e., twice a week for seven weeks) from October to November 2016. We

collected 473 data points, and, on average, each respondent reported their data on 11 out

of 14 occasions.

In this step, we emailed out an invitation to an online survey to all the respondents, twice

a week (Tuesdays and Thursdays), with the goal of having equal spacing between the

occasions, as suggested by Morrison [167], and, for those respondents who did not answer

within one day, a reminder was emailed.

During the entire period of this phase in the longitudinal study, the participants were asked

to report their answers to the three survey questions (SQ):

SQ1: How much of the overall development time have you wasted due to technical debt

(TD) since last time you took the survey?

SQ2: Which extra activities were the wasted time spent on?

SQ3: What was the source of the problem for which you wasted time?

In survey question SQ1 (used for answering RQ1), the respondents reported the amount

of wasted time using a value between 0-100% of their overall working time since they

last took the survey. To address the potential problem with missing data from the

respondents, if, for some reason, the respondents did not enter the data in one or more

surveys, the respondents were always asked to report their experienced data since the last

time they took the survey. This wording means that if, for some reason, the respondent

did not enter the data in one or more surveys, they would enter the data from the last time

the respondent took the survey. In this way, the surveys cover the full period of sampling.

www.manaraa.com

148

For survey question SQ2 (used for answering RQ2), the respondent could select between

the following options on which the extra time was spent (more than one option was

selectable): “Additional code analysis”, “Additional testing”, “Additional

communication”, “Additional refactoring necessary for new implementation”,

“Additional searching for documentation”, “Implementing workarounds” and “other”. If

ticking the “other” option, the respondents were asked to textually describe this activity

in a comment field. The listed activities were provided by Besker et al. [144].

In survey question SQ3 (used for answering RQ3), the different TD types provided by

Besker et al. [144] were presented to distinguish the different sources on which the

respondent had wasted time. The terms used were “Code-related issues,” “Testing

issues,” “Architectural issues,” “Documentation issues,” “Requirement issues,”

“Infrastructure issues,” and “Other.” If ticking the “Other” option, the respondents were

asked to textually describe this issue in a comment field.

The respondents were asked to indicate the amount of impact each of these listed issues

had on their reported wasted time using a 5-point Likert Scale (Not at all - To a great

extent).

The final third step of the longitudinal data collection phase was a follow-up survey to

collect retrospective specific data from each respondent.

13.4.1.4. Analysis and Synthesis

In the fourth phase, the data collected were analyzed qualitatively, that is, by statistical

analysis of the data collected from the survey answers.

For descriptive purposes, data is summarized by mean, median, and standard deviation

for continuous variables, and numbers and percentages for categorical variables. The

distribution of waste by the developer and by their characteristics is presented and

analyzed graphically using boxplots. The strength of association between waste and

various explanatory variables, such as developer characteristics and TD-types, is

summarized by R-squared, describing the fraction of variance in wasted time explained

by a set of explanatory variables.

Multivariable analyses of waste related to developer characteristics were also performed,

aiming at finding combinations of developer characteristics associated with greater or

lower waste. For this purpose, non-parametric regression trees were used. Model

evaluation was performed by leave-one-out cross-validation.

The distribution of waste over time, overall, and by subject was analyzed graphically by

scatterplots overlaid by smooth regression curves estimated using LOESS.

Analyses of longitudinal data were performed using logit-linear mixed effects models

with the fraction of wasted time as the response variable. Activities or TD types were

included as categorical explanatory variables in the models, and subject-specific

intercepts and time effects were included as random effects. Random effects were

included to account for subject-specific time trends and intra-individual correlations.

Robust standard errors of the parameter estimates were used to obtain standard errors and

confidence intervals that are robust against heteroscedasticity. Modeling was performed

www.manaraa.com

149

on a logit scale, motivated by the bounded nature of the response variable, and the effect

of TD activities on waste on the original scale was computed as follows. The average

effect on waste was computed by artificially changing the activity to inactive or active

state for each data record, accounting for both subject effects and other concurrent

activities. A confidence interval for this statistic was computed using the non-parametric

bootstrap percentile method with 10000 bootstrap replicates.

Statistical analyses were performed with SPSS (version 22), SAS 9.4 (SAS Institute, Cary

NC) using the GLIMMIX procedure for logit-linear mixed effects models, and R version

3.4.3 [168] using the rpart package version 4.1-13 for non-parametric regression trees

[169].

13.4.1.5. Verification and Explanation

In the fifth phase, the results and conclusions acquired in previous phases were verified

using supplementary qualitative semi-structured interviews. We conducted 12 interviews

with developers and four interviews with their managers. All the developers had

participated in the previous data collection phases, and the managers were all familiar

with the study but had not actively participated in the previous data collection phases.

As suggested by Seaman [170], this study employed semi-structured interviews including

a mixture of open-ended and specific questions designed to elicit not only the information

foreseen but also unexpected types of information. In the interviews, the questions were

planned but not necessarily asked in the same order as they were listed. This interview

technique allowed for the flexibility to explore interesting insights as they emerged.

Each interview lasted between 30 and 40 minutes, and, to obtain a more accurate rendition

of the interviews, all interviews were digitally recorded and transcribed verbatim. All

interviewees were asked for recording permission before starting, and they all agreed to

be recorded and to be anonymously quoted for this paper.

During the interviews with the developers who had participated in the quantitative data

collection phase, the compiled results from their individual results were presented, and,

during the interviews with their managers, an aggregated view of all the respondents from

the respective company was presented. This presentation allowed the interviewees to

more easily relate to the interview questions where the results of the survey were

addressed. Some interview questions had a focus on corroborating certain findings that

we already thought had been established during previous data collection activities, where

the questions were carefully worded (avoiding leading questions) to allow the interviewee

to provide fresh commentaries on them [66].

The interview questions were primarily designed to a) advance the understanding of the

survey results, b) verify that the questions in the survey were understood as intended and

in a uniform manner, c) confirm the results of the survey, d) help to understand the

implications of the results, and e) investigate how the negative effects due to TD are

communicated and managed by the companies.

www.manaraa.com

150

13.4.1.6. Analysis and synthesis

When analyzing the qualitative data collected in this thesis, a thematic analysis approach

was used. Thematic analysis is a method for identifying, analyzing, and reporting patterns

and themes within data, which involves searching across a dataset to find repeated

patterns of meaning. The thematic analysis provides a flexible and useful research tool,

which offers a detailed and complex explanation of the collected data [84].

When analyzing the qualitative data, the guidelines provided by Braun and Clarke [84]

were used to conduct the analysis in a thorough and rigorous manner. The thematic

analysis was conducted using a six-phase guide.

First, the audio-recorded qualitative data collected from interviews was transcribed into

written form, where we were also able to familiarize ourselves with the data. The second

step involved the production of initial codes from the data, where we organized the data

into meaningful groups. In this phase of the analysis, a qualitative data analysis (QDA)

software package called Atlas.ti was used. The third phase focused on searching for

themes by sorting the different codes into potential themes and collating all the relevant

coded data extracts within each identified theme. Each extract of data was assigned to at

least one theme and, in many cases, to multiple themes. For example, the citation “Maybe

you have to encourage the developers a bit, to get the data” was coded as “Willingness to

input data” in the theme “Measuring Wasted Time Aspects.” To ensure that the coding

was performed in a consistent and reliable fashion, triangulate the interpretation of the

data, and avoid bias as much as possible, two authors synchronized the output of the

coding, following guidelines provided by Campbell et al. [85].

The fourth phase focused on the revised set of candidate themes involving the refinement

of those themes. The refinement focused on forming coherent patterns within the themes.

Otherwise, we revised the themes or created a new theme. The fifth phase focused on

identifying the essence of each theme and determining what aspect of the data each theme

captured. This phase also stressed the importance of not just paraphrasing the content of

the data extracts, but also identifying what is interesting about them and why. The final

phase of the thematic analysis took place when we had a set of fully developed themes

and involved the final analysis.

www.manaraa.com

151

Based on the research taxonomy, a coding scheme containing four broad themes and 22

individual codes was developed. Fig. 2 shows the outcome of the analysis process, where

the mapping between different hierarchical categories and individual codes are

graphically presented.

Figure 2. Coding Scheme

TABLE 1 - CHARACTERISTICS OF RESPONDENTS

13.4.1.7. Internal Exact Independent Partly Replication

Replication plays a key role in empirical software engineering [68], and is proposed as an

important means of increasing confidence and assessing reliability in the result [69], [70].

As illustrated in Fig. 1, the original study consists of six different research phases,

followed by a seventh phase in the replicated study. After the first sixth research phases,

we were able to answer all stated research questions. The replicated study aimed at

www.manaraa.com

152

answering three of the identical research questions used in the original study. After the

results from the replicated study were derived, these results were compared with the

results from the original study to either confirm or disconfirm the original findings.

Figure 3. Integration of Replication study

As described above, in the seventh phase in this study we have conducted an internal

exact independent partly replication of the study, where the Internal reflects that the

replication team is the same as in the previous phases. The categorization Exact reflects

that the procedures are followed as closely as possible to determine whether the same

results can be obtained. To gain more insight into the original results, this categorization

also includes replications that are modified to some extent by, for example, altering the

subject pool or other conditions. The categorization of Independence reflects that, during

the replication phase of the study, we deliberately varied some aspects of the conditions

when collecting the data [68]. The categorization Partly points out that not all of the

research areas and research questions are replicated. More specifically, this phase aims at

replicating the findings for RQ1.1, RQ2, and RQ3 addressing the overall amount of

wasted time due to TD and also the extent of encountering different types of TD.

Due to restrictions on how this replication study could be carried out by the involved

company, and what data was feasible to collect, the datasets in this replication study do

not include enough information to allow for replications of all original research questions.

For instance, the replication study did not include any follow-up interviews with the

participating developers and their managers. This limitation resulted in RQ5 and RQ6 not

being replicated in this phase of the study, and they were, therefore, omitted.

www.manaraa.com

153

The design of this phase follows the guidelines proposed by Carver [171] for reporting

replication studies. The motivation for conducting this replication phase was to validate

the results from the original study by changing the participant pool and the way we

collected data to gain additional confidence that the original results were not the result of,

for example, a data collection bias or the selection of the study design. Below, we describe

each activity for the replication study, using the same phases as we used in the original

study, to illustrate similarities and/or differences between the two sets of studies.

In the first phase (in comparison with section 4.1.1) of the replication study, this part of

the study was presented to one specific software company in Germany, with an extensive

range of software development. The company name has been anonymized for

confidentiality reasons. The research team decided with the contact persons at the

company on a suitable research model to use in this replication phase of the study.

During a second phase (in comparison with section 4.1.2) in the replication phase, the

contact persons in the company invited developers to voluntary participation in the study.

Similar to the original study, all the participants were provided educational material about

the research topic.

The developers were quite experienced, where 21% had worked for more than 10 years

in software development, and only 21% had fewer than five years of experience. Fully

56% of the respondents had a bachelor’s degree, and only two developers had no formal

higher education.

We cannot share the rest of the characteristics of the developers and the company due to

confidentially reasons (such as gender, software system type, and programming

language).

The third phase (in comparison with section 4.1.3) consisted of two steps of data

collection using two sets of surveys. The first survey gathered similar descriptive statistics

to summarize the backgrounds of the participants as were collected in the original study.

The second step collected data using a similar longitudinal research design (one survey

per week). This stage was designed to collect reported data from 47 software developers.

However, the replication survey was designed slightly differently, compared to the survey

that was used in the original study. Each week, the respondents were asked to report on

one specific major work item within their ongoing project and both how much time the

respondents spent on this item and how much time was wasted due to experiencing TD

for this specific item. More specifically, the participants were asked to report the share of

their total development time spent on the specific work item and the share of that time

they wasted due to TD as well as what extra activities the wasted time was spent on and

the source of the problem for which they wasted time on this work item?

The fourth phase (in comparison with section 4.1.4), the analysis of the collected data

in the replicated study has been analyzed in quantitatively, that is, by interpreting the

numbers collected from the survey answers. The replicated phase did not include steps

similar to the fifth and sixth phases we conducted in the original study, where we

conducted supplementary qualitative semi-structured interviews and analysis of those.

In total, we received data from 177 different working items, and the results of the

replicated study and its comparison with the original study are presented in Section 6.5.7.

www.manaraa.com

154

13.5. Results and Findings

The following subsections present the results for the research questions presented in

Section 2, and the results are grouped according to each research question.

13.5.1. Wasted time

The first set of questions (RQ1.1, RQ1.2, and RQ1.3) focused on how much of software

developers’ overall development time is wasted due to TD and whether the distribution

of the wasted time varies with developer characteristics and follows any patterns.

13.5.1.1. Wasted time (RQ1.1)

During the longitudinal data collection phase, 43 developers reported their wasted

working time due to experiencing TD twice a week for seven weeks (in total 473 data

points). On average, each developer reported 10.7 times out of 14 possible occasions

(with a median of 12 and standard deviation of 3.9 times) with the average time interval

between the reporting occasions of 3.1 days, with a median of 2.7 and standard deviation

of 1.3 days (excluding Saturdays and Sundays).

The single most striking observation to emerge from the data was that the respondents

reported that, on average, 23.1% of all software development time is wasted due to TD,

with the standard deviation of 21.1% and a median value of 17.13%.

When calculating the average amount of wasted time, the different interval lengths

between the occasions were taken into account. This meant that, for example, when a

developer reported 33% waste for a three-day period following a reported waste of 40%

for a 10-day period, the average wasted time was calculated as 38.38%.

Turning to the distribution of the reported wasted time, Fig. 4 shows a histogram of the

respondents and their wasted time. Most respondents wasted between 0% and 10% of

their working time. It is interesting that six respondents reported a wastage of more than

50% of their working time.

To put the above numbers into context, Fig. 5 shows an overview of the distribution of

the wasted time as a function of calendar time. The mean wasted time remained quite

stable over the entire study period at about 25%.

www.manaraa.com

155

 Figure 4. Distribution of the reported wasted time

Figure 5. Wasted time on technical debt as a function of calendar time. The blue curve,
presenting mean waste as a smooth function of time, was estimated using LOESS.

www.manaraa.com

156

Figure 6. Distribution of the wasted time for each respondent

Fig. 6 shows the distribution of each respondent’s reported wasted time illustrated by a

boxplot. Looking at the comparison of medians (the bold horizontal black line in each

box) among the different respondents in the figure, it is apparent that the different

respondents waste different amounts of time due to experiencing TD. The figure also

demonstrates that there are different distances between the median values and the upper

and lower quartile among the different respondents, which indicates that, among the

respondents, there are variances in terms of how consistently the wasted time is reported.

Some respondents’ amounts of reported wasted time vary greatly over time, while other

respondents’ amounts of reported wasted time are more consistent and concentrated.

13.5.1.2. Characteristics (RQ1.2)

When examining the distribution of the wasted time with respect to different

characteristics, we focused on the different variables: (a) years of experience as a

developer, (b) gender, (c) level of education, (d) programming language, (e) company, (f)

age of the software, and, (g) type of software.

The used variables were the same variables that were collected and assessed in the first

step in the data collection phase (e.g., the start-up survey).

The percentage of wasted time versus related to various subject characteristics is

presented in Fig. 7 and Fig. 8. As illustrated in Fig. 7, three variables showed substantial

differences with respect to the reported amount of wasted time:

• The company, explaining 20.4% of the variance in wasted time, with an average

waste ranging from 18.1% in company A to 51.5% in company G (Fig. 7a).

• Software age, explaining 17.4% of the variance in wasted time, with an average

waste ranging from 15.3% (software 5 - 10 years old) to 55.3% (software > 20

www.manaraa.com

157

years old, n = 2) (Fig. 7b).

• Type of software, explaining 33.3% of the variance in waste time. The wasted

time was below average for Modelling and Simulation Systems, Real-Time

Systems and Embedded Systems, and more than twice the average for Data

Management Systems, System Integration Web 2.0 / SaaS Systems (Fig. 7c).

As illustrated in Fig. 8, there were only small variations in the reported amount of waste

time with respect to experience, gender, level of education and programming language.

a)

b)

c)

Figure. 7 (a, b, c): Percentage wasted due to technical debt vs. (a) company, (b) software age, and

(c) software system. Circles represent individual data points, binned into 50 distinct intervals along

the y-axis. The red diamonds show the mean within each group. For a software system, individuals

may appear in multiple groups. Means and fraction variance explained are computed by ordinary least

squares regression, taking concurrent software systems into account.

www.manaraa.com

158

a)

b)

c)

d)

Figure. 8 (a, b, c, d): Percent wasted time on technical debt vs. experience in software development

(a), gender (b), level of education (c), and programming language (d). Circles represent individual

data points, binned into 50 distinct intervals along the y-axis. The red diamonds show the mean within

each group. For the programming language, individuals may appear in multiple groups. Means and

fraction variance explained are computed by ordinary least squares regression, taking concurrent

programming languages into account.

Developer characteristics were further evaluated in multivariable analyses using non-

parametric regression trees, aiming to find combinations of characteristics associated with

greater or lower waste. However, only trivial models consisting of a single variable were

found, as adding more variables resulted in increased cross-validation error. This is

probably due to the limited sample size and more specifically to the small number of

individuals in subgroups with high waste.

www.manaraa.com

159

13.5.1.3. Distribution (RQ1.3)

When examining each respondent's distribution of the wasted time over the study period,

we noticed that the variations in mean level and trend during the study period differed

between the respondents. All respondents showed an individual distribution of the wasted

time during the study period, but, when examining all different distributions, we could

identify four main distribution profiles of the reported wasted time which were generally

common to all of the respondents’ reported data. The four identified profiles are

associated with the pattern of the distribution of the wasted time and labeled: Fluctuating,

Periodical, High, and Low. Examples of these profiles are illustrated in Fig. 9. For some

developers, it was evident that the wasted time varied periodically over time, meaning

that, within a sub-period, the distribution followed a low, high, or fluctuating pattern, but,

at some point, this pattern changed. The fluctuating profile demonstrates that, over time,

the wasted time did not show any clearly discernable time-related pattern and included

both high and low amounts of wasted time. The Low and High profiles illustrate a wasted

time that is largely consistent over time, even if some peaks can be recognized.

Figure 9: Different distribution profiles of the wasted time. The blue curves,

presenting mean waste as a smooth function of time, were estimated using LOESS.

The most common pattern among the respondents was the Low profile, and the less

common pattern was the High profile. The distribution between the Fluctuating and the

Periodical patterns was largely equally divided.

www.manaraa.com

160

13.5.2. Additional activities

The next research question (RQ2) explores the different activities on which the wasted

time is spent and also whether the amount of the wasted time relates to any specific

activity.

When developers encounter TD during their software development work, they are forced

to perform supplementary actions. Accordingly, these different activities would not have

been necessary if the TD were not present.

During the longitudinal data collection phase, the respondents were asked to report the

additional activities on which the wasted time was spent during each occurrence. For each

of the 473 reporting occurrences, the respondents selected the activities on which the

wasted time was spent from a list of pre-defined options (listed in Section 4.1.2).

The distribution of wasted time across different activities is presented in Fig. 10, with

activities sorted according to mean waste per activity. As illustrated in this Figure, the

mean wasted time was greatest when performing Additional Testing, with a mean wasted

time of 43.1%, followed by Additional Refactoring (mean waste 42.8%) and Additional

Code Analysis (mean waste 37.9%). The activity with the weakest association to the

wasted time is Additional Communication, with a mean waste of 28.8%. The “None”

option was mainly chosen when no time at all was wasted (mean waste 5.4%).

The marginal effect of each activity, accounting for concurrent activities and subject

effects through mixed effects models, is presented in Table 2. The activity with the

strongest effect on wastage of time was again performing Additional Testing, associated

with a waste increase of 12.4 percentage units (p.u.) (95% CI 8.7 to 17.3 p.u.), followed

by Additional Code Analysis (mean waste increase 11.7 p.u) and Additional Refactoring

(mean waste increase 10.3 p.u.). Again, performing Additional Communication was

associated with little additional waste (mean waste increase 4.1 p.u., 95% CI 0.9 to 8.0

p.u.). This means that having to perform Additional Code Analysis increases the average

amount of wasted time by 12.4%, compared to if no additional code analysis had to be

performed. When selecting among the different activities the wasted time was spent upon,

the respondents also could enter an additional activity manually in a text field that was

Finding 1: Almost a quarter of all developers’ working time is reported as wasted due

to having TD.

Finding 2: Company and System types have the strongest impact on the amount of

wasted time.

Finding 3: Even if the distribution of the wasted time varies over time for individual

developers (following different identified patterns), the overall distribution of the

wasted time for all developers and over time is largely consistent.

www.manaraa.com

161

not predefined, and, interestingly, no other additional activities caused by the present TD

were added here by the respondents. This implies that the six listed activities cover most

of the extra activities on which the time is wasted due to experiencing TD.

Figure 10: Wasted time due to technical debt vs. Activities. Circles represent individual

data points, binned into 50 distinct intervals along the y-axis. The red diamonds

represent the mean waste for each activity.

Finding 4: The activity “Additional testing” has the strongest association with the

wasted time followed by conducting “Additional source code analysis” and

“Additional refactoring.”

www.manaraa.com

162

13.5.3. Technical debt types

Since there are several types of TD [14], and these different TD types could have different

levels of negative impact on the amount of the wasted time, and these different TD types

could potentially have different levels of negative impact on the amount of the wasted

time, in this third research question (RQ3), we sought to explore the ways in which these

TD types impact wasted time and also which TD type has the most negative impact on

the wasted time from a developer’s perspective. For each reporting occasion, during the

longitudinal data collection phase, the respondents ranked the level of negative impact

different listed TD types had on the reported wasted time, using a list of different TD

types. For each listed TD type, a 5-point Likert ranking scale was set from “Not at all” to

“To a great extent.”

From the data in Table 3, it is apparent that a significant proportion of the TD encountered

is related to source code, where 19.3% of the code-related TD is encountered “To a great

extent.”

Fig. 11 illustrates each studied TD type and its relation to the reported

amount of wasted time. A positive trend was observed between increased levels

of encountering the different TD-types and increased average waste—meaning

that the more of each TD type the developers encounter, the more time they

waste—although a monotonic trend was not observed for all TD types. The

strongest association with wasted time was observed for Testing issues,

explaining 21.2% of the variance in wasted time, followed by Code-related

issues and Architectural issues. Only a weak association was observed between

wasted time and Requirement issues, explaining only 9.0% of the variation in

TABLE 3 - The Likert scale of each encountered TD type

www.manaraa.com

163

waste. We, therefore, suggest that the association of Requirement TD and the

amount of wasted time be investigated further in future studies.

Figure 11: Wasted time on technical debt vs. technical debt type. The black diamonds

represent the mean for each level on the Likert scale, error bars present 95% confidence

intervals for the mean.

Finding 5: The TD type “Testing issues” has the strongest association with the wasted

time, followed by “Code-related issues” and “Architectural issues,” with increased

level of negative impact associated with increased amount of wasted time. Only a weak

association between Requirement TD and amount of wasted time was observed.

www.manaraa.com

164

13.5.4. Introducing new Technical debt

Sometimes, developers are forced to introduce new additional TD due to already existing

TD. The interest payment could take place in the form of, for example, introducing new

shortcuts and maintenance obligations taken as the developer tries to fix the prior debt.

This research question (RQ4) aims to address the amount of additional TD developers are

forced to introduce due to present TD.

The result in Fig. 12 graphically illustrates that in 24% of all the reported occasions the

developers reported that they were, to some extent, forced to introduce additional TD.

Within these 24% reported occasions, on 13% of the occasions the respondents reported

that they were forced to introduce additional TD “To a very little extent,” and 3.6%

reported “To a little extent,” and 4% “To some extent,” and 3% reported that they were

forced to introduce additional TD “To a great extent.”

When performing a detailed analysis of each reported occasion where the respondents

were forced to introduce new additional TD due to already existing TD “To a great

extent,” the result shows that the encountered TD types for these occasions were Test TD

(in 53% of the occasions) and Source Code TD (in 47% of the occasions).

Figure 12. Introduction of new TD

The majority of the interviewees explained the reasons why they were forced to introduce

additional TD in terms of “time pressure.”

This expressed time pressure was commonly described both in relation to the

implementation of the solution, but also that it caused other activities to suffer, such as

performing sufficient testing- or updating related documentations.

For example, one interviewee claimed,“Usually, it takes a longer time to make the correct

solution. It is more or less always a time question. Often, when you introduce technical

debt, it’s because something had turned up. Which was not quite the way that we thought

it was when we planned how to do the software.” Moreover, in discussing this issue,

www.manaraa.com

165

another interviewee said, “You implement suboptimal solutions because you are in a

hurry. Plus, we don’t find the time to use the test tools we have and write tests for

everything.”

13.5.5. Awareness and Benefits

This research question (RQ5) focuses on the awareness of the negative consequences TD

has on the daily software development work and whether (and in what way) the

developers and managers consider the insight of the wasted time valuable.

Apart from when participating in this study, none of the developers explicitly measured,

tracked, or reported their wasted time but still considered themselves to have a high level

of awareness regarding the amount of time they wasted due to TD.

Initially, during the interviews with each of the developers, we asked them how much

time they estimate they waste in general, and after that, we showed them their results from

their average reported wasted time from the longitudinal study. When we presented the

individually reported wasted time for each developer, all developers acknowledged their

reported amount of time. As one interviewee stated, “Yes, so we thought there would be

some time, so it's not that we're shocked by it [22% wasted time], but it could have been

worse,” while another developer commented, “To me, it's a natural part that you waste

25%, and I think it's quite reasonable to spend so much time maintaining old code.”

On the other hand, during the interviews with the developers’ managers, the general level

of awareness of the amount of time developers waste due to TD was considerably lower.

As one manager observed, “As a manager, if I had data telling me that people are wasting

around 25% of the time they have available for developing, I would for sure like to know

that because that’s unacceptable... If I knew, I would be able to do something about it, or

at least to raise the problem.”

These quotes also highlight the different ways developers and managers seem to appraise

the amount of development time that is reasonable to waste due to TD.

Overall, both developers and managers considered the benefits of knowing the amount of

wasted time similarly. The benefits were described by the developers as the quantified

wasted time potentially helping to detect and to predict the need for additional quality

improvements.

Some developers also highlighted the benefits of being able to improve forecasting and

capacity planning and being able to justify change and thereby motivate their managers.

Finding 6: In a quarter of all occasions of encountering TD, developers are forced to

introduce additional TD due to already existing TD, potentially causing contagious debt.

Finding 7: Encountering Test TD and Source Code TD forces the developers to

introduce additional TD to the largest extent.

www.manaraa.com

166

For example, one developer stated: “Yes, it would be useful when you do the estimation

of when you start a project and when you finish it.... So I could use it to predict my

baselines in my delivering.”

One developer in the study also described the benefits of tracking the wasted time as a

useful tool when implementing a new type of management strategy with the goal of

decreasing the negative impact of TD. “You could combine it [the reporting of the wasted

time] with working in another way. Because you can use it for tracking…We should also

change the way that we actually make new things to try to work without creating new

technical debt. And then you use the tracking so if these working methods actually work.”

Furthermore, when discussing the quality issues, an interviewee claimed, “If I had a huge

amount of wasted time, it also shows that we have a lack of quality… I think it would be

a tool that could help us improve our quality.”

Moreover, the managers emphasize the benefits of quantifying the amount of the wasted

time in terms of being able to discuss and identify various causes that adversely affect the

development work. For example, one manager claimed, “But, as a manager, I thought it

was interesting because I want there to be as few barriers to my team as possible. And

this is a form of obstacle. And sometimes when you ask people ‘what's the obstacle to

you?’ then it almost becomes more an emotional question than it becomes a fact.”

13.5.6. Challenges of tracking TD interest

This question (RQ6) highlights the interaction between developers and managers with

regard to the challenges of tracking the interest of TD.

Overall, even though developers consider themselves to benefit from making the amount

of wasted time evident, most of the developers did not have a positive attitude toward

continuously reporting the wasted time to their managers. Even if the interviewed

developers generally claimed that the specific reporting task took them only a couple of

minutes for each reporting occasion, several interviewees argued that this reporting task

would require unwanted additional time and effort.

Similarly, even if the managers consider the benefits of knowing the amount of wasted

time to be important, the managers did not explicitly request this information from the

Finding 8: Developers have a higher awareness than their managers of how much

time is wasted due to TD, and the developers and their managers seem to appraise

the amount of development time that is reasonable to waste due to TD in different

ways.

Finding 9: Both developers and managers described the benefits of knowing the

amount of wasted time in a similar manner. The amount of wasted time was found to

be a useful indicator of the software quality, and it could also be used for improving

forecasting and better capacity planning and assisting the communication between

managers and their developers.

www.manaraa.com

167

developers, and, in general, they did not have a positive attitude to asking the developers

to report their wasted time.

Several managers expressed their unwillingness to introduce new reporting tasks to the

developers, and one manager described the fear of causing extra stress for the developers.

“There is a certain fear of reporting. It will almost become a negative spiral of it

eventually. We have little stress-related sick leave. If you get that, because of such a

system, you probably have not achieved that much.” Another manager echoed this notion,

describing the attitude toward introducing reporting of wasted time to the developers.

“Even though I see the value of this kind of data, it's nothing I'm going to force anyone

to report, but if people are interested in continuing this here, I'm very welcome from my

side, but it may be on an interest-based basis.”

Even if all interviewees were familiar with the concept of TD and its related negative

effects, this knowledge was not put into practice, and the lack of having an overall strategy

for managing TD was evident.

13.5.7. Results of the Replication study

The motivation to carry out this replication part of the study is to investigate further

whether the previous results demonstrate that the findings can be repeatedly generated

and thus the original findings were not an exceptional case. In particular, the aim is to

broaden the results obtained in RQ1.1, RQ2, and RQ3 by investigating the same research

areas but with other independent data sets, as described in section 4.1.7.

Each sub-section will first report the results from the replicated study and then present a

comparison of its results with the results of the original study.

13.5.7.1. Replication of result addressing wasted time due to technical

debt

Research question RQ1.1 addresses how much of software developers’ overall

development time is wasted due to technical debt. The replicated study focuses on how

much time was wasted on specific working items.

In total, we have analyzed data from 177 reported working items from 47 developers at

the same company but working on different projects and with different products.

Finding 10: The willingness to quantify the wasted time is a major challenge, since

developers and managers do not, in general, have a positive attitude toward

implementing additional reporting.

Finding 11: None of the interviewed companies had a clear strategy on how to track

and address the wasted time.

www.manaraa.com

168

Figure 13. Distribution of the reported wasted time from the replicated phase

The replicated study found that, on average, 28.51% of the software development time

for the reported working tasks is wasted due to TD, with the standard deviation of 25.37%

and a median value of 20.0%. Fig. 13 shows a histogram of the reported wasted time for

each work item. Most work items wasted, on average, 20% of their time due to

experiencing technical debt.

Even if both data sets from the original and the replicated study are large enough to

support comparison, they do not permit comparison using the same statistical methods

since they are based on different variables. However, the result of the two studies can be

examined together by studying the result of the reported amount of wasted time.

In the replicated study, the respondents were asked to report on the wasted time for the

work item they spent most of their working time on since the last time they took the

survey. However, since the respondents potentially could perform other working tasks

during the period (for which we do not know the amount of wasted time), we cannot

generalize their reported waste of time for the full period. Our analysis of the time the

respondents spent on the reported work items shows that the respondents spend on

average 57.63% of their working time on each of reported work item.

Despite the different used variables, one might intuitively expect that the amount of

wasted time due to TD should be quite similar in both of the studies. In the original study,

the respondents reported that, on average, 23.1% of all software development time is

www.manaraa.com

169

wasted due to TD. This result is a slighter lower share of wasted time than the reported

average of the replicated study, where the respondents reported that, on average, they

waste 28.5% on each of the reported tasks. However, by combining results from the

original study with results from the replication study, we conclude that Finding 1 stating

that “Almost a quarter of all developers’ working time is reported as wasted due to having

TD“ is valid and strengthened.

13.5.7.2. Replication of result addressing different activities

This part of the replication study aims at replicating the findings from RQ2 by exploring

the different activities on which the wasted time is spent and also whether the amount of

the wasted time relates to any specific activity.

The distribution of wasted time across different activities from the replication study is

presented in Fig. 14 where the activities are sorted according to mean waste per activity.

By studying the ranking of activities with respect to average waste of time in this figure,

it is evident that this data differs noticeably from the data in the original study. For

instance, in the replicated study, the activity of performing “Additional code analysis”

has the strongest association to the wasted time whereas, in the original study, performing

“Additional Testing” has the strongest association. In the replication study, the additional

activity of performing “Additional Testing” is ranked quite differently since it has the

weakest association with the wasted time (except for the “other activity option”).

However, one should note that the mean value of each of the activities is fairly close to

the original study, except for the mean value of “Additional Testing.”

Figure 14: Wasted time due to technical debt vs. activities for the replicated study.

Circles represent individual data points, binned into 50 distinct intervals along the y-axis.

The red diamonds represent the mean waste for each activity.

www.manaraa.com

170

In a similar way as in the original study, the marginal effect of each activity, accounting

for concurrent activities and subject effects through mixed effects models, is presented in

Table 4. The activity with strongest effect on wastage of time in the replicated study was

again performing Additional code analysis, associated with a waste increase of 10.4

percentage units (p.u.) (95% CI 3.9 to 18.2 p.u.), followed by Additional searching for

documents (mean waste increase 8.7 p.u) and Additional Refactoring (mean waste

increase 8.6 p.u.).

To conclude, the original and the replicated studies show a somewhat different

relationship and ranking between the amounts of wasted time in relation to the different

activities, even if the mean value of each individual activity is quite similar to the values

in the original study.

13.5.7.3. Replication of result addressing technical debt types

When answering research question RQ3, we examined the extent to which different TDs

were encountered in order to understand their frequency.

www.manaraa.com

171

As shown in Table 5, a significant proportion of the encountered TD is related to source

code and testing, where 12.36% of the TD for those types is encountered ‘‘To a great

extent.’’

Even though the two sets of results are not identical, they share the same finding when

studying which TD types are most often and most seldom encountered to a large extent.

When comparing the result from the original study with the result from the replicated

study, it is apparent that the code-related TD and test related TD are the two TD types

that are most often encountered “To a great extent.” Furthermore, the results in both

studies show that requirement related TD is most seldom encountered “To a great extent.”

To conclude, these replicated results confirm previous findings and contribute additional

evidence that developers suffer from several different TD types and that they differ in

terms of their frequency and magnitude.

13.6. Discussion

The following subsections present discussions and limitations for the research results

presented in Section 5, and the results are grouped according to each research question

followed by a section addressing the replicated phase of the study and, finally, a section

about the implications for practitioners and researchers.

13.6.1. Wasted time and introduction of new TD

The first three research questions (RQ1, RQ1.1, and RQ1.2) focus on how much software

development time developers are wasting due to TD, and the fourth question (RQ4)

www.manaraa.com

172

addresses to what extent developers are forced to introduce new TD because of already

existing TD.

The most striking finding shows that developers waste almost a quarter of all development

time due to TD, and, even if different patterns of the distribution over calendar time were

observed, the overall distribution of the wasted time did not show any clear trend.

Even if this study does not explore if, and in what ways, the first introduction of TD

affected the productivity of the development work, this result indicates that the present

TD causes a great deal of wasted time during the overall development work, where the

ratio of development effort and maintenance effort in a product development lifecycle

becomes tilted toward more maintenance effort due to the presence of TD in the software.

Moreover, this indicates that, if the software companies are not aware of this time and

have not calculated for it, they could easily end up with time pressure, forcing them to

introduce additional TD. In fact, the developers report that a quarter of all encountered

TD forces them to introduce additional TD. This result indicates that, depending on

software companies’ degree of ability to remediate TD, the amount of TD could

potentially increase continuously, and, in the worst case, this could lead to a vicious circle

of TD growth. This result quantitatively corroborates the findings of [163], where the

term contagious debt is described.

13.6.2. Additional activities

The second research question (RQ2) in this study sought to explore which activities the

wasted time was spent and also whether the amount of the wasted time was related to any

specific activity. The result shows that the most common activity on which the extra time

was spent in performing additional testing, followed by additional source code analysis

and additional refactoring.

This result implies that, if the systems did not have TD, the time spent on these activities

could be reduced. Furthermore, spending a great deal of time on these activities during

the software development could, consequently, potentially be an indicator of a system

suffering from TD and also an indicator of the amount of interest that has to be paid and

thereby indicate a decrease in developer productivity.

13.6.3. Technical debt types

The results from the third research question (RQ3) show that all TD types are significant

and strongly associated with the amount of the wasted time, whereby Source code TD has

the strongest association with the amount of wasted time. This result demonstrates that

all the different types of TD require attention. A possible explanation for these results

may be that developers have a higher awareness of Source Code TD and, therefore,

experience its negative impact as more prominent. Likewise, the results show that

developers encounter less Requirement TD and Infrastructure TD, which also points to

the idea that developers are less prone to attribute the wasted time to those TD types.

www.manaraa.com

173

This result further implies that software companies need to focus on several different

types of TD and not, as is currently the case, focus primarily on code-related TD.

13.6.4. Awareness and challenges

The fifth and sixth research questions (RQ5 and RQ6) address the levels of awareness of

the developers and their manager regarding the amount of time wasted due to TD, the

benefits of this insight, and how they communicate these issues within their organizations.

From the results, we can see that software developers are reasonably aware of the amount

of time they waste during the development phase, despite the fact that they do not attempt

to measure, track, or quantify it.

However, the managers of the developers have a much lower awareness of the amount of

time the developers waste, and the professions also seem to have different views on what

is a reasonable or unreasonable amount of time to waste on TD. Both developers and

managers could see the benefits of quantifying the amount of wasted time, but both

professions were, in general, reluctant to practically implement a systematic approach to

quantifying the wasted time. Developers argued that reporting the wasted time due to TD

would require additional time and effort, while the managers were hesitant to implement

such measures due to the extra workload it would place on the developers. If the managers

are not aware of the amount of software development time the developers waste because

of TD, they are consequently not able to react and take appropriate action regarding the

wasted time. This means that, in a worst-case scenario, the amount of wasted time and

the lack of developer productivity could end up being increased instead of being reduced.

In the long run, low developer productivity can, due to time pressure, stress the developers

to further introduce new TD and can also have a negative impact on the amount of new

features that can be implemented and can harm both the maintainability and evolvability

of the software product.

13.6.5. Replication study

In general, a successful replication of a study is one that helps the research community

gain information about conditions under which the results hold [71], [72].

The replication phase of this study aimed at replicating the results addressing RQ1.1,

RQ2, and RQ3. The replicated results for RQ1.1 and RQ3 where, overall, in line with the

results from the original study, which implies greater reliability and confidence in these

results.

Further, the results for RQ2 contradicted to some extent the results from the original study

addressing the different activities on which the wasted working time was spent.

A hypothetical explanation of this discrepancy may be found in how the data was

collected in the replicated study. One of the major alterations of the data collection in the

replicated study is that it was collected at only one company (compared with six

companies in the original study). This replication setting creates a context in which the

www.manaraa.com

174

sources of variations potentially could be limited. One could expect that several of the

participating developers in the replication study worked in a similar environment or even

in the same code base, thus experiencing TD that required specific activities to take place,

resulting in a company-specific result that is less generalizable to a broader community.

However, even if the results from this research questions show a different ranking of how

strong each activity is associated with the amount of wasted time, the mean value of each

activity was quite similar to the original results. In the replication study, the result showed

that performing additional code analysis had the strongest association with the amount of

wasted working time due to experiencing TD, as compared with the original study where

performing “Additional Testing” had the strongest association. This result could

potentially be explained by a company-specific environmental setting, but further studies

that take these variables into account will need to be undertaken.

13.6.6. Implications for practitioners and researchers

It is commonly quite difficult to motivate and argue for the need to prioritize refactoring

activities due to software experiencing TD in today’s software industry. One major reason

for this can be described in terms of the lack of knowledge about how TD negatively

affects the software developer productivity.

This study has shown that an extensive amount of valuable working time is wasted due

to TD and that this TD causes the developer to perform different activities that would not

have been necessary if the TD were not present.

However, being able to describe and understand the amount of the negative effects of TD

in terms of wasted time can help when developers argue for the need to initiate refactoring

to reduce the amount of TD and thereby potentially decrease the future amount of time

wastage.

This study makes a novel contribution to the existing body of knowledge and suggests

several important practical implications that demonstrate the impact TD has on software

development productivity. This contribution of this study can be used by both software

practitioners and researchers within the field:

• Based on this study’s empirical result, we show that software developers report

that they waste, on average, 23% of their working time due to TD.

• We present results showing that the wasted time is most commonly spent on

performing additional testing, followed by conducting additional source code

analysis and performing additional refactoring.

• The results show that in almost a quarter of all occasions when encountering TD,

the developers are forced to introduce additional TD due to the already existing

TD.

• This study provides new insights into TD research by revealing that the

developers are largely aware of the amount of time they waste due to TD.

www.manaraa.com

175

However, the study shows that the developers’ managers are not as aware of the

amount of time developers waste and that the different professions seem to have

different views on what is a reasonable or unreasonable amount of time to waste

due to TD.

• This study shows that none of the companies tracked or measured the amount of

wasted time due to TD, and none of the companies had an aligned strategy for

addressing the interest of TD.

• This study shows that both developers and managers see the benefits of tracking

the amount of wasted time, but both professions are somewhat reluctant to

implement such measures in practice. This unwillingness is recognized as a

challenge for companies.

• We provide an empirically based study on how TD negatively affects

practitioners within the software industry, based on both quantitative and

qualitative data. A major strength of this study is the longitudinal research,

which increases the validity of the results compared to cross-sectional studies.

• Overall, these findings suggest strong recommendations for software companies

to focus further on continuously undertaking refactoring initiatives of TD issues

to keep the amount of TD at bay on an ongoing basis. In general terms, this

means that such TD remediation and prevention initiatives also would have a

positive impact on the overall developer productivity.

13.7. Verifiability, limitations, and threats to validity

The purpose of this section is to reflect on the extent to which this study has addressed

the goal of ensuring verifiability, describing limitations, and finally addressing potential

threats to validity.

13.7.1. Verifiability and limitations

There are several important limitations that necessitate a cautious interpretation of the

results of the present study. First, selection bias is a potential limitation since the data

from the invited companies in the study was gathered only in specifically chosen

companies. Second, given the self-reported nature of the collected data in the surveys, the

findings should be interpreted with caution, particularly because, during the longitudinal

data collection phase, the surveyed developers may have had insufficient knowledge and

ability to categorize and quantify the correct TD type and to quantify the correct amount

of wasted time due to TD.

However, one could argue, since reporting the time spent on different tasks and activities

is a common practice for developers performing their time registration, their ability to

report the time should be reasonably sound. With this as a background, together with the

provided education material, guiding the participating developer to distinguish between

www.manaraa.com

176

different types of TD would assist in determining the amount of wasted time and the

specific type of TD on which it is being wasted.

Third, a note of caution is due, since this study’s result is derived from reports from

developers and managers only, meaning that the findings cannot be generalized to other

software practitioner roles.

13.7.2. Threats to validity

The result of this study may be affected by some threats to validity such as internal

validity, external validity, construct validity, and reliability.

The major threat to the internal validity of this research design is when the causal

relationships between the wasted time and the different TD types and the different

activities were examined, as it affects our ability to explain accurately the phenomena that

we observed [66]. To mitigate this threat, we have adopted both a univariable and a

multivariable analysis of the data.

In this work, we have analyzed data to find a correlation between specific parameters in

the reported data. However, we do acknowledge that this correlation does not imply

causality between the variables and that the same results may not be reached if

considering another collection of companies or developers with different characteristics.

However, to further mitigate this threat, we conducted follow-up interviews with 12 of

the participating developers in which the relationship between the reported amount of

wasted time and the listed additional activities and the different TD types were assessed.

Several of the findings were also validated by an additional replication study using a

different and independent data sets, concluding and strengthening several of the derived

results.

Furthermore, to mitigate the potential threat to the validity of self-reports, all participants

reported the wasted time related to TD for a short period of time (on average 3.1 days).

The confidence of self-reporting data was also supported by the fact that the practitioners

knew that the surveys were coming, so they could pay special attention to their working

tasks and effort spent. In addition, in management research, it is not uncommon to use

self-assessment when studying participants’ productivity since this method is considered

as a consistent method for objective measurements of performance [172].

The external aspect of validity addresses the extent to which it is possible to generalize

the findings [73]. The responses that our respondents gave might not be representative of

the entire developer population. Although we cannot generalize the results, we can rely

on a relatively high number of participating organizations (6), working in different

business and application domains. Furthermore, in surveys, there is always a risk that the

sample is biased, and, therefore, a potential threat relates to, for instance, the

geographical, cultural, and demographic distribution of response samples. However, to

confirm the generalizability of this study and to mitigate this threat, we have replicated

www.manaraa.com

177

the study with a different set of respondents, both in terms of geographical area and

software development culture.

Construct validity addresses the extent to which the operational measures that are studied

accurately represent what the researchers are considering [73]. This threat is related to

whether we can correctly use the amount of wasted time as a substitute for software

development productivity and whether the data collection approach is well-designed for

the research purpose.

Using only a single report for each respondent involves a risk that this reporting gives a

measurement bias [86]. To mitigate this threat, the data were collected using several

reporting occasions over time, using a longitudinal data collection approach. This

approach reduces the subjectivity of only studying the reported data on one single

occasion.

Furthermore, this threat also relates to whether the study constructs are defined and

interpreted correctly by the respondents [73]. To mitigate this risk and to ensure that the

respondents had the same base of knowledge in the field of the study, all participants in

the longitudinal study received the educational material before starting the study. Another

threat concerning the survey questions relates to whether the question could be clearly

understood by the participants. To mitigate this threat, the initial survey draft was

reviewed by all the authors, and we additionally made a pilot study with one software

practitioner to examine the understanding of the survey questions.

The goal of reliability is to minimize the errors and biases in a study [66]. Reliability

addresses whether the study would yield the same results if other researchers replicated

them, following the same procedure, by means of the extent to which the analysis is

dependent on specific researchers [73], [66].

To mitigate this threat in the original study, following guidelines by Yin [66], we designed

the study in six distinct and separately documented phases (see Section 4.1), and made

these steps as operational as possible to assist the repeatability of the study results.

As mentioned briefly in the above section, this study also includes an additional phase

with the goal of replicating several of the findings. This replication study also assisted in

mitigating several validity issues of the original study. In terms of external validity, the

replication of the study assisted us by showing that several of the original results were not

dependent on the specific conditions of the original study. The independence of the

replicators from the original study lends additional confidence that the original results

were not the result of data collection bias.

Similarly, in terms of internal validity, the replication study also assisted in showing the

range of conditions under which the results hold. Since the several variables of the

replication study were different from those of the original study (e.g., a new set of

respondents, different data collection design, etc.), the replication phase contributed some

confidence that the findings are not limited to the particular setting we had in the original

www.manaraa.com

178

study. Consequently, the additional replication study addressed both external as well as

internal validity.

13.8. Conclusion and future work

This study set out to analyze the negative effect TD has on software productivity from

the point of view of software developers and their managers.

This study reports on the replication and extension of a longitudinal study of technical

debt, where 43 developers reported twice a week for seven weeks how much time they

waste due to TD, on which additional activities this time was spent, and what type of TD

caused the wasted time.

This study provides evidence that TD hinders software developers by causing a

substantial amount of wasted time. This wasted time negatively affects the development

productivity and viability of the software. Even if both developers and their managers

clearly see the benefits of reporting the wasted time, it is a challenge to implement such

a reporting task due to unwillingness and time restrictions. This study shows that TD also

contributes to the need to perform time-consuming additional activities, and developers

report that, on average, 23% of all software development working time is wasted due to

TD.

Furthermore, due to the presence of TD during the development work, developers most

commonly have to perform additional testing, source code analysis, and refactoring. This

study also shows that, in a quarter of the occasions where developers encounter TD, they

are forced to introduce additional TD due to the already existing TD. This burden of being

forced to introduce additional TD demonstrates the contagiousness of TD, and our results

suggest that TD should be prioritized for refactoring because it forces the developers to

introduce further additional TD, which generates even more interest.

These findings indicate that software companies need to be armed with strategies and

proactive management to enable them to track the interest of TD. Such a strategy could

result in better, more informed decisions to balance the accumulation and the repayment

of TD.

It was not possible in the present study to study the relationship between the qualities of

the developers’ software in relation to the wastage of their working time. However, as

part of future work, we plan to extend this study by applying a triangulation of the

quantum of TD within the investigated software system by, for instance, using tools for

source code statistics, test statistics, or code churn metrics. This extension and replication

of the study would provide additional heterogeneity in the relationship between TD and

the productivity loss over different values of TD.

www.manaraa.com

179

ACKNOWLEDGMENT

Many thanks to the industrial partners who participated in both the original and the

replication study and interviews. We would also like to thank Henrik Imberg for his

valued support during the statistical analysis of the data.

www.manaraa.com

180

www.manaraa.com

181

14. The Influence of Technical Debt on

Software Developer Morale

This chapter aims to explore how software developers’ morale is influenced by TD and

how their morale is influenced by TD management activities. Furthermore, the study

presented in this chapter also correlates the morale with the amount of wastage of time

due to TD.

Previous research in the Technical Debt (TD) field has mainly focused on the technical

and economic aspects, while its human aspect has received minimal attention.

Firstly, we conducted 15 interviews with professionals, and, secondly, these data were

complemented with a survey. Thirdly, we collected 473 data points from 43 developers

reporting their amount of wasted time. The collected data were analyzed using both

quantitative and qualitative techniques, including thematic and statistical analysis.

Our results show that the occurrence of TD is associated with a lack of progress and waste

of time. This might have a negative influence on developers’ morale.

Further, management of TD seems to have a positive influence on developers’ morale.

The results highlight the effects TD has on practitioners working life. This study presents

results indicating that software suffering from TD reduces developers’ morale and thereby

also their productivity. However, our results also indicate that TD management increases

developers’ morale and developer productivity.

14.1. Introduction

In recent years, there has been an increasing interest in technical debt (TD) within the

software engineering discipline. The majority of previous studies focused on

investigating the technical, financial, and organizational aspects of TD [173], [15],[153].

However, until now, the literature has paid minimal attention to the human, and social

aspects of TD, including the role of developers in the occurrence of TD as well as its

consequences for them. More recently, several studies have suggested that TD has a

negative influence on developers’ emotions and affects [10],[11],[12] and their morale

[7],[13], where morale can be explained as a multidimensional concept that “subsumes

confidence, optimism, enthusiasm, and loyalty as well as a sense of common purpose”

[174]. However, none of these previous studies specifically focuses on empirically

investigating and explaining the relationship between TD, the developers’ morale, and

software developer productivity. Since no known research has focused on exploring these

relationships empirically, this study seeks to obtain data from practitioners who

experience TD on a daily basis, in order to expand the empirical findings in this area.

This chapter has been published as:

The influence of Technical Debt on software developer morale,

 T. Besker, H. Ghanbari, A. Martini, and J. Bosch,

Journal of Systems and Software, vol. 167, pp. 110586, 2020.

www.manaraa.com

182

In a study by Tom et al. [7], the authors suggest that morale, alongside quality,

productivity, and project risk, are the four main areas that are negatively influenced by

the occurrence of TD. The authors claim that, since the occurrence of TD reduces

software quality, developers must spend more time and effort to address quality issues in

the future. This, in turn, will decrease developers’ productivity and maintenance costs in

the long term [7],[13]. On the other hand, some studies suggest that developers do not

feel comfortable about taking on TD [10],[11],and it lowers their motivation [12].

Software development is a sociotechnical phenomenon [175], and therefore, its success

depends on both its social and technical aspects [176]. The ways in which today's software

developers work require a comprehensive understanding of their feelings, perceptions,

motivations, and identification with their tasks in their respective project environments

[177]. Recent studies have shown that positive affective states, such as happiness,

satisfaction, and motivation, increase software developers’ productivity and software

quality [176],[178]. On the other hand, based on the results of previous studies, mainly

from management science [179],[180] and more recently in software engineering [181],

[182],[[183],[184], developers’ morale and their productivity seem to correlate. However,

to the best of our knowledge, there is a lack of studies focusing on investigating the

relationship between TD and morale and productivity using empirical data.

Considering the large number of previous studies which argue that software firms take on

TD to boost their productivity and obtain added business value [7], it becomes apparent

that minimal attention has been paid to the human and social aspects of TD [185], and

that there is a need for empirical studies [186] to explore and explain the effects of TD on

developers’ morale and to correlate it with developer productivity.

The goal of this study is, therefore, to understand how software developers’ morale is

influenced by TD present in the software they are developing and also to understand how

their morale is influenced by TD management activities. Furthermore, in order to

understand if their morale affects their work productivity, this study explores associations

between morale with the amount of wastage of working time due to experiencing TD.

Note that the occurrence of TD and its produced time waste are two separate concepts:

companies can have TD with a low “interest rate” (the term used to characterize the

negative impact of TD). In such case, the presence of TD does not produce time waste

but can still influence morale. On the other hand, TD can produce time waste, which may

be the reason why TD affects morale. For these reasons, we study the concepts separately

and we have two separate research questions (RQ1 and RQ3).

The term developer morale will be examined by surveying developers to indicate on a

Likert scale their opinion about the impact of TD on three different dimensions of morale.

The three different dimensions are: a) Affective antecedents such as focusing on

developers’ moods, feelings, emotions, and attitudes, and b) Future/goal antecedents with

a focus on the developers’ goals for the future and, finally, c) Interpersonal antecedents

addressing the relationships and communication between developers. These dimensions

are described in detail in section 2.2.

Based on this goal, this study will examine the following research questions (RQ):

www.manaraa.com

183

• RQ1: Does the occurrence of TD influence developers’ morale?

• RQ2: Does the management of TD influence developers’ morale?

• RQ3: Does wasted time (due to TD) correlate with morale?

• RQ3.1: Does wasted time correlate with TD occurrence dimensions of

morale?

• RQ3.2: Does wasted time correlate with TD Management dimensions of

morale?

Our study has several novel contributions to software engineering research and practice.

First, our study specifically concentrates on investigating the influence of TD on

developers’ morale. Our findings are encouraging since they clarify the impacts of TD on

different dimensions of morale and illustrates its relationship with developer productivity.

Especially by indicating that developers consider TD and its management as important

factors influencing progress and future development activities, this study encourages

software firms to consider the human and organizational consequences of TD more

seriously. Additionally, since previous studies have indicated the link between morale

and developers’ productivity, our study investigates this relation empirically. In future

research, this approach will enable enhanced exploration and measurement of software

developers’ morale in different contexts.

An earlier paper at the 11th International Symposium on Empirical Engineering and

Measurement (ESEM) [187] presented part of the results reported in this study. However,

this manuscript extends that previously published study significantly by triangulating the

previous data collection and adding more data and, moreover, by adding more analysis.

The novelty of this study's approach compared to the previous study lies in the morale

focus of this paper, where we correlate the waste of time with three different dimensions

of morale together with seven additional interviews and additional survey questions

related to the morale perspective of TD.

The data representing the wasted time are based on reported data from developers who

were asked to individually keep track of the time they wasted due to experiencing TD, on

a daily basis. They were thereafter asked to themselves report this time to us, twice a

week in a survey. Meaning that the data are based on the participants' own tracking and

calculations.

The original study was exploratory, and based on our initial results, we proposed a set of

propositions. In this study, using those propositions as a starting point, we conducted an

additional cycle of research to investigate further the validity of those propositions and

also to explain the logic behind the correlation of TD, morale, and productivity. In order

to investigate if developers' morale affects their productivity, we have added one

additional research question (RQ3), where we correlate the reported amount of working

time wasted due to experiencing TD (as a proxy of productivity) with three different

dimensions of morale and discuss them in detail. The related Research section has been

extended to be broader and more carefully cover additional related research publications.

We have extended the data collection by adding a longitudinal study collecting additional

www.manaraa.com

184

quantitative data in order to understand how much time developers report as being wasted

due to experiencing TD over a longer period of time. We also augment our previous study

with seven additional interviews. We believe that this additional context extends and

strengthens the results derived in the original study.

This paper is structured as follows: Section 2 presents the theoretical background of the

study. In section 3, we describe the research methodology. Section 4 presents the research

results. Sections 5 and 6 discuss the findings and threats to the validity of the study,

respectively. Finally, Section 7 concludes the study.

14.2. Theoretical background

In this section, we discuss the background of the study in terms of TD, morale, the

relationship between TD and morale, and the relationship between TD and productivity,

and finally, the relationship between morale and productivity.

14.2.1. Technical Debt

In recent years, TD has been widely studied in the software engineering literature

[15],[186],[188]. TD is composed of a debt, which is a sub-optimal technical solution that

leads to a short-term benefit as well as to the future payment of interest, which is the extra

cost due to the presence of TD (e.g., slow feature development or low quality) [153]. The

principal is regarded as the cost of refactoring TD. Although accumulated TD might result

in a gain between the short-term benefit and the interest paid, in many cases, documented

in the literature and software projects, the interest might largely surpass the gain by, for

example, leading to development crises [110].

There are several kinds of TD, such as Architecture TD, Testing TD, and Source Code

TD [15], depending on where the sub-optimality has occurred, what artifact, and what

level of abstraction. In recent years, there has been an increasing interest among software

engineering researchers in providing novel solutions enabling software developers to

manage TD. Management of TD consists of a set of activities that enable software

development teams to both prevent the occurrence of TD and deal with existing TD and

its unwanted consequences[15]. It is worth noting that, in their systematic mapping study,

Li et al. [15] classify TD management activities into identification, measurement,

prioritization, prevention, monitoring, repayment, documentation and representation, and

communication. However, discussing each of these activities is out of the scope of this

study.

14.2.2. Human factors related to Technical Debt

Today's software development work is, to a great extent, a human-based activity that

depends on several different human aspects [189] whereby its success is dependent on

financial, social, physical, and emotional factors [190].

www.manaraa.com

185

The success of software development projects is dependent on the practitioners working

with the software. For instance, Beecham [191] states that developers' motivation is an

important issue, and that lack of motivation is one frequent cause of software

development project failure [191]. Furthermore, Verner et al. [192] state that motivation

is considered to be the single largest factor in developer productivity.

Moreover, several researchers state that, specifically, TD has a negative impact on the

practitioners' daily work with software that suffers from experiencing TD. Tom et al. [7]

state that it is likely that developers find the effects of TD frustrating in the long term, and

Laribee [193] explains that economic downside, there’s a real psychological cost to

technical debt that causes both frustration and a sense of helplessness to the developers

and also Vogel-Heuser and Neumann [194] state that human factors can be a reason for

TD.

Further, software engineering success is described by [195] to increasingly dependent on

the well-being of developers’ communities, and Tamburri et al. [21] highlight that a

suboptimal development community can have a significant impact on the software by

causing unforeseen project cost. The authors refer to this suboptimality as social

debt. Alfayez et al. [196] reveal that the skills and habits of developers have an impact on

the software where e.g., developer commit frequency and seniority have a significant

negative relationship with the TD introduced by the developer, meanwhile, Salamea and

Farré [197] conclude that communication skills have barely any impact on TD.

14.2.3. Morale

Morale, as a research topic, has originally been of interest within the military discipline.

However, after the Second World War, it has received increasing attention from other

disciplines such as organizational sciences, management, education, and healthcare [198].

Despite its vast literature, morale lacks a coherent and precise definition, which increases

the risk of researchers measuring other concepts instead of morale. For example, in an

extensive literature review, Hardy [198] shows that several concepts such as satisfaction,

motivation, and happiness, have been used interchangeably to discuss morale. Similarly,

França et al. [199], describe that the terms morale, inspiration, enthusiasm, and motivation

are popular synonyms even if they potentially have distinct actual meanings in the field

of psychology.

However, by conducting a longitudinal empirical study, Hardy [198] clarifies that morale

is different from these concepts. This study will only focus on morale as a human factor,

where we use the definition of morale provided by Peterson et al. [174] as “a cognitive,

emotional, and motivational stance toward the goals and tasks of a group. It subsumes

confidence, optimism, enthusiasm, and loyalty as well as a sense of common purpose.”

As can be understood from this definition, morale is a multidimensional concept

consisting of different affective, interpersonal, and motivational dimensions. Therefore,

it becomes obvious that for studying morale, a combination of unidimensional concepts

such as satisfaction, motivation, or happiness must be considered.

Previous studies have used different qualitative and quantitative methods for measuring

morale, including direct (e.g., [200],[201]), and indirect measurement methods (e.g.,

www.manaraa.com

186

[110]). In its simplest way, morale has been widely measured directly by using single-

scale measures in which individuals are asked to rate their level of morale [200].

However, using this approach becomes problematic since morale is a subjective

phenomenon, and therefore, there is a danger that respondents have different perceptions

of morale [198]. Consequently, Hardy [198] suggests an approach for predicting the

levels of morale from measuring a set of factors that influence morale. These antecedent

factors of morale are divided into three main categories.

Affective antecedents consist of factors related to moods, feelings, emotions, and

attitudes. For instance, high morale is often associated with positive affective states (e.g.,

sense of achievement, recognition, or happiness), while low morale is associated with

negative affective states (e.g., feelings of failure, criticism, or injustice) [198]. The second

category, future/goal antecedents, consists of factors related to the perception of

individuals about the difference between the future and today as well as their goals for

the future. For instance, believing in a better future, sense of progress, or success are

considered as being key factors in increasing morale while lack of clarity, confidence, or

progress are considered to lower morale [198]. Finally, the interpersonal antecedents of

morale pertain to the factors related to the relationships and communication between

individuals. For instance, having good relations with others, teamwork, or helping each

other contributes to higher levels of morale while a bad work atmosphere or perceiving

bullying or being dragged down by others can reduce morale [198].

14.2.4. The Relationship between Technical Debt and

Morale

The morale of software practitioners can be affected by several different things, such as,

for example, the maturity or stability of the adopted development process [202] or by the

quality of the overall software product architecture [203]. However, this study will only

focus on the impact that TD has on morale.

Tom et al. [7] argue that TD has a very strong negative effect on developers’ morale.

Following this argument, we tried to identify previous studies that discuss the relationship

between TD and morale. In so doing, we used Google Scholar to search for studies

mentioning both Technical Debt and morale. The search, which was conducted in January

2020, returned 415 potentially relevant results. After reading these results and checking

their list of references, we were able to find only twelve sources mentioning the potential

influence of TD on developers’ morale or emotions (see Table I).

TABLE I - PREVIOUS STUDIES ARE MENTIONING THE RELATIONSHIP BETWEEN TD AND

DEVELOPERS’ MORALE.

Ref Argument
Source of

Argument

www.manaraa.com

187

[11] TD will hurt you later. It is better to pay upfront. An

Interviewee’s

opinion

[13] Uncontrolled technical debt has a negative impact on

the developers’ morale.
Literature,
Tom et al. [7]

[8] Engineers don’t like technical debt because they want

to create perfect software.
An

Interviewee’s

opinion

[200] Working off debt can be motivational and good for

team morale.
Author’s

opinion

[201] TD reduces developers’ motivation. Author’s

opinion

[12] Working off debt can be motivational and good for

team morale.
Literature [200]

[7] TD ultimately has negative impacts on morale. Author’s

conclusion

Developers would find the effects of technical debt

frustrating in the long term.
Author’s

interpretation of

a blog-post and

several

interviewees’

opinions

A lot of the tasks to prevent or repay the accrual of TD

aren’t very fun.
Several

interviewees’

opinion

[10] Taking TD doesn’t feel good for developers. An

interviewee’s

opinion

[204] Apart from technical challenges, technical debt also

impacts the morale and motivation of the developer

team.

Author’s

conclusion

www.manaraa.com

188

Evans

Data

Corp, CIA

Factbook,

and Stripe

research

[205]

76% of the developers reported that paying down TD

hurts their morale.
Result from a

survey in a

online- report

[206] Messy code will drive messy behavior and frustration,

limit understandability, and, consequently, induce

stress in its developers and invoke a vicious cycle of

bugs, vulnerabilities, and technical debt that is hard to

get past. This cycle will eventually drive developer

morale down.

Author’s

conclusion

[207] The study finds that the negative impacts of TD in

startups would be on morale, productivity, and

product quality. -> Refers to Greenfield study

Literature

Giardino et al.

[6]

We found three articles and one blog post that have mentioned the influence of TD on

developers’ morale. Also, during our literature search, we found four articles that mention

the influence of TD on developers’ emotions. However, analyzing these sources revealed

that only four of them support their arguments with empirical evidence, and the rest either

cite other sources or report opinions. In addition, all these sources only mention the

relationship between TD and developers’ morale or emotions, and investigating this

phenomenon is not their primary research focus.

Taken together, we aim to understand how the occurrence of TD and its management may

affect the three dimensions of morale suggested by Hardy [198]. Therefore, we decided

to conduct an exploratory field study to understand how TD and possibly its management

could potentially influence software developers’ morale. To achieve this, we had to adopt

a research approach where we utilize the indirect approach suggested by Hardy [198] to

explore the potential influence of TD and its management on developers’ morale (see Fig.

1). Using this approach not only enables us to investigate the impacts of TD and its

management on developers’ morale but also to gain a better understanding of the potential

consequences of TD for developers and understand which dimensions of morale are more

influenced by TD.

14.2.5. The Relationship between Technical Debt and

Developer Productivity

Software developers' performance has a direct impact on software development

productivity [208], and even if the term “waste of time” is commonly used within Lean

organizations to target increased productivity, there are only a few studies looking into

waste in software development organizations [209]. As previously mentioned, several

www.manaraa.com

189

researchers describe that software suffering from TD has a negative impact on software

development productivity. For instance, Graziotin et al. [210] state that affective states

such as emotions, moods, and feelings have an impact on the productivity of individuals.

There is no commonly agreed definition of productivity [43], but in software engineering,

productivity is commonly defined, from a financial perspective, as the effectiveness of

productive effort measured as the rate of output per unit of input [43], [44], [45],[30].

Productivity is also a measure of the quality of an output relative to the input required to

produce the output. This means that productivity is a combined measurement of efficiency

and quality. However, [43] argue that “there is no metric that adequately captures the full

space of developer productivity” and instead, encourage the design of a set of metrics

tailored for answering a specific goal and a purpose-based definition of the desired

software value.

Several constraints can influence software development productivity, such as cost,

schedule, and scope [161]. Moreover, Oliveira et al. [45] express that researchers have

not yet reached a consensus on how to measure productivity properly in software

engineering. However, in this study, we have decided to focus on productivity in terms

of the amount of wasted software development time due to developers being impeded

during their daily software development work by experiencing TD within their software.

However, we do acknowledge that lack of waste does not, by default, guarantee

productivity. Our intention is not to redefine the term productivity to software

practitioners and organizations, but we motivate this proxy based on the reason that if less

time were spent on “extra” work tasks and activities due to experiencing TD, more time

could be spent on other activities that would increase the overall productivity.

Sedano, Ralph, and Péraire [211] echo this notion by stating that “waste is any activity

that produces no value for the customer or user,” and reducing this waste of time would

thereby improve the software development productivity. In their study, they identified

that TD could decrease the developer’s productivity both in terms of wasted time and by

causing reworking and an extraneous cognitive load.

This paper is somewhat related to a previous study we conducted [212]. In that study, we

more specifically studied the amount of wasted working time due to TD. The result of

that study shows that TD contributes to the need to perform time-consuming additional

activities and that developers waste, on average, 23% of all developers working time due

to TD.

14.2.6. The Relationship between Morale and Productivity

Previous research suggests that the level of employees’ morale is correlated with their

productivity [181], [182], [183], [198], and project success [184]. This correlation has

been explained mainly in terms of employees’ perception of their progress

[182],[184],[198],[191], and their personal accomplishments [181],[183],[213].

Thus, employees’ progress is explained mainly in terms of their perception about the

amount of work that is completed and the amount of unnecessary waste [182],[184],[198].

For instance, empirical data collected by Hardy [198] suggests that individuals who

www.manaraa.com

190

perceive their morale too low consider the time spent on performing their work is less

than the time they waste on organizing the workload. Fairley and Willshire [182] suggest

that software firms can significantly increase developers’ morale and productivity by

eliminating avoidable reworks (i.e., waste). A sufficient amount of rework (e.g.,

refactoring or testing) is known to be beneficial in software projects. For instance, Damian

and Chisan [181] suggest that developers’ pride achieved as a result of continuous

software improvements has a positive influence on developers’ morale and ultimately

leads to higher productivity. However, Fairley and Willshire [182] argue that a majority

of software firms deal with a significant amount of unnecessary reworks, which could

have been avoided if the software development tasks had been performed correctly in the

first place (e.g., by avoiding the unnecessary accumulation of TD). McConnell [200] also

suggests that such avoidable reworks are very costly and lead to a waste of development

and maintenance time. Previous research suggests that TD taken reactively as a short-

term solution such as minimizing documentation or testing or “dubious budget savings”

[200] lowers both morale and productivity [183].

To conclude, several researchers have pointed towards the idea that working with

software suffering from TD has an impact on the developers' morale and further that

morale influences objective productivity indirectly. However, to the best of our

knowledge, there is a lack of empirical studies assessing the relationships between TD,

morale, and productivity.

Fig. 1. The conceptual framework

The conceptual framework is shown in Fig. 1 and summarizes the above discussion. As

illustrated in this figure, in this study, we aim to investigate the relationship between TD

and developers’ morale and its influence on their productivity. In particular, we try to

understand how the occurrence and management of TD could affect the three dimensions

of morale discussed above. Using this approach not only enables us to capture the

attitudes of developers towards TD and its management but also to understand which

dimensions of morale are more influenced by TD and its management. Additionally, we

try to capture any potential relationship between developers’ morale and their

productivity in terms of the amount of time they waste due to the occurrence of TD. To

study the relationships shown in our conceptual model, we have conducted an empirical

study using a mixed-methods approach.

www.manaraa.com

191

14.3. Methodology

There are different types of empirical studies. Since our goal is to study TD and morale

in its natural context, we have adopted a mixed-method approach where we use both

qualitative and quantitative data collection and analysis methods, and part of the study

also collects data longitudinally.

This study is based on data from 15 face-to-face interviews, and a survey, together with

a longitudinal study, in order to examine the negative impact TD has on software

developer morale and developer productivity. The study was conducted between

September 2016 and January 2018.

As visualized in Fig 2, the overall research design was divided into six phases. The figure

represents both activities that were performed in the initial study (darkest grayed boxes),

the activities that were conducted partly in the initial study but enhanced in this extension

of the study (light grey boxes), and also the additional research activities that are new in

this part of the study (white boxes). The first four phases have a focus on answering RQ1

and RQ2, and when answering RQ3, all six phases are involved. Meaning that in phase 5

and 6, we collected data that we used together with the data from the previous phases

when answering RQ3. The following sections describe each phase and the related

research methods used in each stage.

Fig. 2. Visualization of the research design and research method used in each phase

14.3.1. Phase 1—Contextual Analysis and Design.

First, the study was presented and discussed during a workshop with software

practitioners from several software companies, all having an extensive range of software

www.manaraa.com

192

development. The selection of companies was carried out with a convenience sample of

industrial partners within our network. This phase acted as a guide for collecting data

about the studied context and choosing the most suitable research design. The research

team decided to base the research model on a longitudinal study together with

supplementary follow-up interviews.

Secondly, an invitation to participate in the study was distributed to the workshop

participants. Following the guidelines provided by Ployhart and Vandenberg [67], to

those 43 developers who approved to participate in the study, we emailed educational

material (see Appendix D) intended to minimize inter-observer (all researchers

communicate the same knowledge) and inter-instrument variability (all participants

receive the same information).

Since the definition of TD is crucial and sets the context for the entire study, we

specifically focused on the educational material on guiding the respondents to understand

the basic concepts of TD fully. Since there is no unified description of TD, we selected

three different descriptions of TD, in order to provide the participants with information

that they could relate to from their own perspective. Even if the selected different

descriptions provide similar information, they also illustrate different aspects of TD, such

as consequences, artifacts, costs, and life-cycle perspectives. First, the initial and

commonly used definition of TD was introduced by Ward Cunningham’s [186]:

“Shipping first-time code is like going into debt. A little debt speeds development so long

as it is paid back promptly with a rewrite… The danger occurs when the debt is not repaid.

Every minute spent on not-quite-right code counts as interest on the debt,” followed by

Steve McConnell’s also commonly used definition of TD [200]:“A design or construction

approach that’s expedient in the short term but creates a technical context in which the

same work will cost more to do later than it would cost to do now (including increased

cost over time).” Finally, a third description provided by the researchers of this study was

used in order to provide a description of TD which illustrates that TD does not only have

to include code- or design-related artifacts: “Technical debt is a non-optimal solution in

code (or other artifacts related to software development) that gives a short-term benefit

but cause an extra long-term cost during the software life-cycle.”

14.3.2. Phase 2—Qualitative Data Collection

In the second phase, we conducted four rounds of interviews. This part of the study

employed semi-structured interviews, including a mixture of open-ended and specific

questions designed to elicit not only the information foreseen but also unexpected types

of information [170]. The questions in the interviews were planned but not necessarily

asked in the same order as they were listed. This interview technique allowed for the

flexibility to explore interesting insights as they emerged. Each interview lasted between

30 and 45 minutes, and all interviews were digitally recorded and transcribed verbatim.

All interviewees were asked for recording permission before starting, and they all agreed

to be recorded and to be anonymously quoted for this paper.

We prepared a set of questions based on the antecedent factors of morale suggested by

[198], and the interview protocol is available in Appendix B. To improve the reliability

www.manaraa.com

193

of the collected data, at least two authors participated in the interviews. In these

interviews, when possible, we asked the interviewees to show us at least one specific item

from their TD backlog and answer our questions by considering that item. For example,

we asked all the interviewees from two of the companies to pick some of the existing

issues with its SonarQube code-analysis tool, while developers from another company

were asked to choose some of the non-allowed dependencies highlighted by their in-house

tool. When selecting these specific cases, we tried to verify that these TD issues were

affecting the interviewees’ work in practice.

14.3.3. Phase 3a—Analysis and synthesis.

To analyze the qualitative data collected from interviews conducted in phase two, we used

a thematic analysis approach [214]. Thematic analysis is a reliable data analysis method

for capturing and reporting themes—important patterns of meaning related to a research

phenomenon within qualitative data. Thematic analysis is especially suitable for studying

the attitudes and behavior of people to explore a novel research phenomenon [215]. In

this study, we conducted a deductive thematic analysis, in which the researcher codes

data according to a pre-existing coding frame rooted in previous theories [214]. When

analyzing the qualitative data, the guidelines provided by Braun and Clarke [214] were

used to conduct the analysis in three phases using a thorough and rigorous approach.

In the first phase, we prepared a codebook based on two main sources that were initially

identified. First, using the theoretical framework suggested by Hardy [198], a set of codes

related to three dimensions of morale was generated.

Second, based on the results of Li, Avgeriou, and Liang [15], a set of codes related to TD

occurrence (i.e., Causes of TD and Consequences of TD) and its management was

generated. For instance, the codes TD Identification, TD communication, TD

measurement, TD monitoring, TD prevention, TD prioritization, TD repayment, and TD

representation-documentation, corresponding to TD management activities suggested by

Li et al. [15], were capture how the interviewees manage TD. The full list of codes,

second-order themes, and themes are shown in Appendix A. After preparing the

codebook, the first author transcribed the recorded interviews, and the research team

reviewed the transcriptions to familiarize themselves with the data and to get an overall

idea of the collected data. The interviews with their transcriptions were added to a data

analysis tool called NVivo.

In the second phase, the second author coded the interviews to identify data segments

relevant to the research questions. Several of these initial codes were randomly picked

and analyzed independently by the other authors, to triangulate the interpretation of the

www.manaraa.com

194

data and to minimize bias as much as possible. The coding procedure was reviewed by

all the authors, and any conflicts were discussed jointly until an agreement was reached.

Fig. 3 Coded as “consequences of TD” and also as “Lack of progress,” a code for low

morale belonging to second-order theme “Progress” (see Appendix A)

We continued the data analysis process by assigning the coded extracts of data to all the

relevant themes. Each extract of data was assigned to at least one theme and, in many

cases, to multiple themes. For example, the code shown in Fig. 3 was assigned to two

second-order themes, “Progress” and “Consequences of TD,” which are shown in

Appendix A. Thus, we could capture the relationship between themes to create our initial

thematic map. Later in this phase, the research team reviewed the identified themes, their

relations, and coded data assigned to each of the themes. Based on the feedback from

reviewing the themes, the second author continued to refine the codes and themes and the

thematic map. During this phase, we realized that the data from the interviews did not

support some of the original themes shown in Appendix A, and therefore, the thematic

map was updated accordingly.

Finally, we prepared a discussion of the results of our data analysis to explain the relations

between the occurrence and management of TD and the developers’ morale. At the end

of this phase, we put forward a set of propositions about the influence of TD and its

management on antecedents of morale.

14.3.4. Phase 3b—Quantitative Data Collection.

To complement our data and to clarify further the initial results from the interviews, we

decided to conduct an online survey. In doing so, we designed a web survey that was

hosted online by SurveyMonkey.com. The first draft of the survey was tested by the

second author and one project manager to evaluate the understanding and the ordering of

the questions and the usage of common terms and expressions [77]. During this

evaluation, we also monitored the time that was needed to answer the questionnaire. The

survey is shown in Appendix C.

The survey was accessible between December 1st, 2016, and January 31st, 2017, and a

reminder was sent out after two weeks to all the invited participants. The survey was

anonymous, and participation in the survey was voluntary. In designing the survey, we

tried to form neutral questions and ordered and formulated them in a way that one

question did not influence the response to the next question. The survey invitation was

mailed directly to 34 developers in companies within our networks, all located in

Scandinavia, with an extensive range of software development projects.

www.manaraa.com

195

The first part of the survey gathered descriptive statistics to summarize the backgrounds

of the respondents and their software. The second part of the survey included questions

based on our theoretical propositions. As it can be seen from Table II, the participants

were asked to rate a set of 5-point Likert Scale statements (very slightly or not at all, a

little, moderately, quite a bit, extremely), to indicate their opinion about the impacts of

TD and its management on antecedents of morale.

TABLE II - STATEMENTS RATED BY SURVEY RESPONDENTS

SID Statements
The dimension of morale

(second-order theme)

ST1
I have been criticized by others for taking TD. Affective (Support and

Communication)

ST2
I feel confident when I make a decision, which leads

to TD.

Future/Goal (Vision for

future)

ST3
I feel that the presence of TD hinders me from

making progress.

Future/Goal (Progress)

ST4
I feel upset when others find out that I have taken

TD.

Affective (Self-worth)

ST5
I feel that others appreciate it when I pay back some

TD.

Affective (Support and

Communication)

ST6 I feel satisfied when I pay back some TD. Future/Goal (Progress)

ST7
I am encouraged by others to pay back TD. Interpersonal (Influence of

others)

ST8
I feel that paying back TD increases our team’s

morale.

All three

The statements aimed at capturing the opinions of survey respondents about our

interpretations of the interview data. As such, in creating the statements, we tried to look

at the codes which were assigned to our second-order themes and choose clear keywords

with a minimum chance of misinterpretation. For example, as can be seen in Appendix

A, Criticism is a code that is assigned to the second-order theme called Support and

Communication, which belongs to the Affective antecedents theme. Therefore, in ST1, we

asked the participants whether they have been criticized by others for taking TD.

www.manaraa.com

196

14.3.5. Phase 4—Analysis and synthesis.

In the fourth phase, the data collected from the previous phase (3b) were analyzed

quantitatively, that is, by statistical analysis of the data collected from the survey answers.

For descriptive purposes, data were summarized by mean, median, and standard deviation

for continuous variables and numbers and percentages for categorical variables. We also

used statistical methods such as Kendall's tau-b and Spearman's rank correlation

coefficient to assess the strength and direction of the association between different

variables.

14.3.6. Phase 5—Data Collection—Longitudinal study

The goal of this phase was to collect information on how much working time developers

report as wastage due to experiencing TD.

A longitudinal study is a research method involving the collection of repeated

observations of the same variables (in our case, the amount of wasted time) on more than

one occasion [67] and over time [86]. The motivation for using this research method was

mainly twofold:

a) We aimed to increase the precision of reporting experienced data (in our case, not based

on single estimations or single perceptions of the wasted time). This was achieved by

studying each respondent over several weeks using a repeated reporting design [86].

b) We aimed to survey respondents' changing reports over time: Longitudinal design has

value for describing both temporal changes and their dependence on individual

characteristics [86]. Further, the longitudinal research method increases the precision of

measuring and reduces inter-individual variation.

This data collection phase included three steps (with three individual and unique sets of

surveys), where the first step focused on respondents’ background data, the second on the

amount of time the respondents wasted due to experiencing TD, and the third on

developer morale (due to TD). SurveyMonkey.com hosted all quantitative data collection

online during the longitudinal study.

The first step was a start-up survey collecting descriptive statistics to summarize the

characteristics of the respondents and their companies.

The second step in the longitudinal phase collected repeated reporting of the wasted time

due to experiencing TD. This stage was designed to collect reported data from 43 software

developers at 14 different survey occasions (i.e., twice a week for seven weeks) from

October to November 2016. In total, 473 data points were collected, and each respondent

reported their wasted time, on average, 11 out of 14 occasions. In this step, the

respondents reported their data (wastage of time) to an online survey twice a week. To

have equal spacing between the reporting occasions, as suggested by Morrison [167], for

those respondents who did not answer within one day, a reminder was emailed.

During the entire period of this phase in the longitudinal study, the participants were asked

to report their answer to the same survey question “How much of the overall

development time have you wasted due to technical debt (TD) since the last time you

www.manaraa.com

197

took the survey?” Meaning the participant kept track of and calculated their own

individual amount of wasted time.

In the surveys, the respondents reported the amount of wasted time using a value between

0-100 percent of their overall working time since they last took the survey. To address

the potential problem with missing data from the respondents, if, for some reason, the

respondents did not enter the data in one or more surveys, the respondents were asked to

report their waste of time since the last time they took the survey. This means that if the

respondent did not answer one or more surveys, the respondent would report the data

from the last time the survey was taken. This means that reporting in the surveys cover

the full period of sampling.

The third step of the longitudinal data collection phase was a follow-up survey to collect

information indicating their opinion about the impacts of TD and its management on the

antecedents of morale. This survey included questions based on our theoretical

proposition presented in Fig. 1. In this part of the survey, participants were asked to rate

a set of 5-point Likert Scale statements (very slightly or not at all, a little, moderately,

quite a bit, extremely).

14.3.7. Phase 6—Analysis and Synthesis.

The data collected in the sixth phase were analyzed quantitatively, that is, by interpreting

the numbers collected from the survey answers. All statistical analyses were performed

with SPSS (version 22) and R version 3.3.2, using Tidyverse [216] version 1.1.1.

During this phase, we collected 473 data points (e.g., reporting of the amount of wasted

time), where each developer reported on average 10.73 times out of 14 possible occasions

(with a median of 12 and std. dev. of 3.91 times) with the average time interval between

the reporting occasions of 3.1 days (with a median of 2.7 and std. dev. of 1.3 days).

In this phase, we further analyzed the association between the wasted working time and

the antecedents of morale (section 2.2). The goal of this statistical analysis was to

primarily indicate correlation, not causality, where the purpose was to understand if the

quantity of wasted time, directly generated by TD, was associated with how the

respondents perceived TD with respect to morale. For example, were respondents more

inclined to consider TD affecting their morale if they wasted more time because of it?

This was a way to analyze additional, quantitative, evidence to support (or not) our results.

Such a step could be considered as increasing source triangulation of our study, improving

its validity. Accordingly, for the test of normality (see Results section), we used a non-

parametric method, called Spearman coefficient rank.

14.4. Results

The following subsections present the results for the research questions presented in

Section 1. First, we present the results from the analysis of the qualitative data collection

for each of the three identified dimensions of morale. Secondly, we present the results

from the quantitative data collection.

www.manaraa.com

198

14.4.1. Qualitative data—Influence of TD on morale (RQ1,

and RQ2)

In total, we conducted 15 face-to-face interviews with software professionals from five

different companies (see Table III). Of the 15 interviewed respondents, we gained access

to information about their working experience within the software development field.

Most of the interviewees were relatively experienced, with a minimum of 5 working

years, a maximum of 44 years and a median of 11 years.

Company A develops equipment for aerospace crews, and company B is an international

telecom company. Both companies are located in Sweden. Company C is a medium-sized

Finnish firm creating and providing a wide range of clinical data-assessment solutions to

customers active in the healthcare sector. Company D is a German branch of an

international enterprise providing software development and maintenance services to

major aerospace customers such as the European Space Agency. Finally, company E is a

Portuguese SME company providing a wide range of IT solutions to both public and

private sectors in different areas such as telecommunications, gaming, finance, and so

forth. The size of the companies cannot be presented due to the risk of violating their

anonymity.

TABLE III - CHARACTERIZATION OF RESPONDENTS

ID
Role

Experience

(years)

Company Country Domain

I1 Software

Developer
NA*

A Sweden Aerospace

I2 Software

Developer
28

I3 Software

Developer
44

I4 Software

Developer
7

B Sweden Telecom

I5 Software

Developer
8

I6 Software

Developer
26

I7 Testing

Engineer
11

C Finland Healthcare

I8 Software

Engineer
6

D German Aerospace

www.manaraa.com

199

ID
Role

Experience

(years)

Company Country Domain

I9 Software

Developer
21

E Portugal Healthcare

I10 Lead

developer
10

E Portugal General IT

I11 Software

Developer
9

E Portugal Telecom

I12 Project

Manager
13

E Portugal Gaming

I13 Senior

Architect
NA*

E Portugal Telecom

I14 Software

Developer
11

E Portugal General IT

I15 Software

Developer
5

E Portugal Gaming

* The interviewee preferred not to share the work experience

The results from the interviews suggest that both the presence and management of TD

influence developers’ morale to some extent. In particular, the occurrence of TD mainly

has a negative influence on the affective and future/goal antecedents of morale. However,

our results do not show any considerable impact of TD occurrence on the Affective and

Interpersonal dimensions of morale. During the thematic analysis, we realized that the

interview data do not provide enough evidence to saturate some of the original second-

order themes and main themes related to TD occurrence. These themes and their

relationships are shown in gray in our final thematic map in Fig. 4.

www.manaraa.com

200

Fig. 4. Visualization of the final thematic map

On the other hand, the interview data indicate that the management of TD has a strong

positive influence on morale. In particular, the interview data show that TD management

has a clear positive influence on all the second-order themes and consequently forming

the three dimensions of morale. In the following sections, we discuss these findings in

more detail.

14.4.1.1. Affective antecedents (RQ1 and RQ2)

To explore the influence of TD and its management on the affective dimension of morale,

we assigned codes into three second-order themes (i.e., valued and taken seriously, self-

worth, and support and communication). However, from the interviewees’ data, we could

only identify a clear relationship between the occurrence of TD and self-worth and a weak

link to support and communication. In other words, it seems that the occurrence of TD

only has a negative influence on developers’ self-worth, but they do not have any strong

affective reaction to it.

Most of the interviewees mentioned that they do not think that their colleagues or

management team have ever criticized them for introducing TD. However, some of them

mentioned that since being criticized could be unpleasant, an individual developer might

hesitate to criticize their teammates for taking on TD. Thus, it is very important to

communicate others’ mistakes appropriately. Interviewee 3 raised this issue as shown in

the following excerpt: “You would have to go and ask them why it is all red in your

[SonarQube] panels when mine is green, but that is a question that is a bit difficult to ask

if people get upset if you hint that they have bad quality.”

www.manaraa.com

201

Even though most of the interviewees think that they have not been subject to criticism

and they should not blame others for taking on TD, several interviewees mentioned that

they do not feel good about making a decision, which obviously leads to the occurrence

of TD. The experience of realizing that they have introduced TD is explained by several

interviewees as a negative feeling by using a wide range of negative terms such as a sense

of insecurity and failure or being afraid and upset. For instance, interviewee 2 mentioned

this issue this way: “It is some kind of a bad feeling because it nags me. […] if I have

missed something that I feel that I should have known.” Several interviewees mentioned

that the reason for such feelings is that they tend to perform a good job. On the other hand,

some of the interviewees mentioned that working with software artifacts, especially

legacy code, which contains a large amount of TD is scary and frustrating. It must be

noted that three interviewees mentioned that such negative feelings might depend on the

level of work experience. Based on the above discussion, we put forward the following

proposition1:

PTD1: The occurrence of TD may have a negative influence on the

affective antecedents of morale.

On the other hand, it seems that the management of TD influences all the second-order

themes of affective dimension. First, the majority of the interviewees mentioned that their

efforts for managing TD are valued and appreciated by their colleagues and management

team. For example, interviewee 4 mentioned that “if you deal with technical debt that

gives a measurable surface impact for improvement […] those things are highly

appreciated”.

Additionally, the majority of our interviewees think that others trust their decisions

concerning TD management, while half of them mentioned that they have a reasonable

amount of autonomy to perform refactoring and repaying TD. However, it seems from

the interviewees’ perspective that the companies do not reward TD management

sufficiently. One developer even mentioned that in their company, slight praise or

appreciation is missing, while another said that if developers cannot show its value and

results, others do not appreciate repaying TD.

On the other hand, the interview data indicate that managing TD is associated with a sense

of self-worth among software developers. The majority of the interviewees think that the

identification and communication of TD enable them to improve their skills by

understanding their mistakes and learning new aspects of software engineering.

Interviewee 1, for instance, mentioned that “over the years [it had] been teaching me lots

of stuff and made me a better developer in a shorter time than would have been possible

without it. I think it has been a huge change.” Also, it seems that managing TD leads to

a sense of achievement and success among developers. Several interviewees mentioned

that performing refactoring and repaying TD is an interesting activity, which motivates

them as well as enables them to increase the quality of software artifacts constantly and

feel confident about their products.

1 In acronyms used for propositions, PTD stands for Proposition Technical Debt and PTDM

stands for Proposition Technical Debt Management.

www.manaraa.com

202

However, several interviewees mentioned that managing TD is not an easy and

straightforward task, and it may be considered pointless. Managing TD of legacy code is

especially challenging since developers often need to perform a long chain of unexpected

changes in different parts of the code until they get to fix the initial issue. Also, it is hard

to show the real value of such improvements and convince managers why it is necessary

to perform them. Several interviewees considered repaying TD to be unnecessary or even

dangerous in some cases since it might cause failure in a working system. Therefore,

some developers might prefer not to touch the code since they consider repaying TD to

be pointless.

Finally, the majority of our interviewees mentioned the good support and communication

within their company for TD management. It seems that they consider TD as an inevitable

phenomenon, which must be identified, documented, and repaid as time and resources

allow. In other words, no matter who introduces TD, they consider TD management a

task that everyone can benefit from and necessary for improving the quality of the

software artifacts.

Overall, based on the observations discussed in this section, we propose that TD has a

negative influence on affective antecedents of morale, while TD management has a

positive influence on affective antecedents of morale. Overall, based on these

observations, we propose that:

PTDM1: TD management has a positive influence on the affective

antecedents of morale.

14.4.1.2. Future/Goal antecedents (RQ1 and RQ2)

To explore the influence of TD and its management on the future/goal dimension of

morale, we assigned codes into two second-order themes (i.e., the vision of future and

progress). Based on the interview data, the influence of TD on the future/goal antecedents

of morale seems to be strong. The majority of the interviewees mentioned that the

presence of TD has a negative influence on their progress and future activities. In

particular, they mentioned that the presence of TD hinders them from progressing in their

tasks. At the same time, it makes the future unclear since developers may face unpredicted

difficulties.

As mentioned by several interviewees, large amounts of TD make the maintenance

difficult and costly since understanding and working with the software becomes

problematic, and there might be unpredictable issues. Also, if TD is not paid back, the

development speed can decrease, and adding new features in the future becomes very

challenging and even impossible. In the following excerpt, interviewee 6 talks about such

an issue: “If you don't reduce the technical debt, you will get development into a stall in

some point; maybe we are walking now, but we could run, but the crawl will come if we

don't pay off the technical debt.”

On the other hand, some of the interviewees mentioned that the presence of TD brings

developers’ confidence down. This could either be because of their awareness of a large

www.manaraa.com

203

volume of TD in their artifacts or because it hinders developers from performing their

tasks. Several interviewees mentioned that introducing TD could make them feel that they

lack the necessary skills and lower their confidence. As a result, they start to be more

conscious about their decisions, and therefore, development speed slows, or developers

will be reluctant to perform refactoring to improve their code.

Several interviewees mentioned the influence of past decisions leading to the occurrence

of TD on their progress. Even though they did not blame previous developers for taking

on TD, some of the interviewees mentioned that they have to deal with TD, which is the

result of poor decisions made by previous developers and which could have been avoided.

For instance, interviewee 8 mentioned that “in the past, either we or that company before

us did not really pay attention and violated the guideline, and because of that, we have to

pay back [TD] now.”

Also, several interviewees mentioned that when different modules are developed by

different developers or teams, the existence of TD in one module can influence the

progress of other developers as well. As a result, working with an external module, which

is not well maintained, is often frustrating and time-consuming. Based on the above

discussion, we put forward the following proposition:

PTD2: The occurrence of TD has a negative influence on the future/goal

antecedents of morale.

On the other hand, the majority of the interviewees mentioned the importance of TD

management, which, from their perspective, makes the future better than the present.

These interviewees mentioned that they have a clear vision of how to manage TD properly

within their company. In doing so, they use different techniques and tools to identify,

document, communicate, prevent, and repay TD. Also, it seems that proper TD

management is associated with a sense of satisfaction. For instance, interviewee 6

mentioned that “I think that is a nice feeling, to be able to pay your debt […] I would say

it is a positive feeling; it is a motivator.”

All the interviewees consider repaying TD to be necessary, but for some items, it is

pointless. For instance, several interviewees mentioned that repaying architectural TD

and testing TD is very important, while some of them mentioned that it is pointless to fix

issues which are considered to be “cosmetic” (e.g., documentation TD) or the items which

are mistakenly highlighted by tools (i.e., false positives), or TD items located in those

parts of the legacy code that rarely change. However, during the data analysis process,

we identified controversial opinions about such “cosmetic” things and “false positives.”

For instance, one software developer suggested that following simple rules such as

naming conventions is very important, while another one suggested that it does not make

sense to go back and fix naming issues. In another case, one interviewee suggested that

writing good comments facilitates future maintenance of software, while another one

mentioned that repaying documentation TD is not worth spending the time and effort.

From the interview data, it seems that proper TD management leads to a sense of progress

among software developers. The majority of the interviewees consider TD identification

and communication a contribution to their teams’ goals, and by repaying TD, they feel

www.manaraa.com

204

successful in progressing toward those goals. Such a sense of progress is a positive

feeling, which enables developers to perform their tasks easily and smoothly.

Therefore, based on the above-mentioned observations, we propose that the occurrence

of TD has a negative influence on the future/goal antecedents of morale, while TD

management has a positive influence on the future/goal antecedents of morale. Therefore,

based on these observations, we propose that:

PTDM2: TD management has a positive influence on the future/goal

antecedents of morale.

14.4.1.3. Interpersonal antecedents (RQ1 and RQ2)

To explore the influence of TD and its management on the interpersonal dimension of

morale, we assigned codes into two second-order themes (i.e., the influence of others and

relationships with others).

Regarding the relationship between the influence of others and the occurrence of TD, the

majority of our interviewees do not blame their colleagues or previous developers for

introducing TD even though they acknowledge that previous sub-optimal decisions which

have led to the occurrence of TD could be avoided in the past. The following excerpt

shows the opinion of interviewee 5 in this regard: “It maybe is stressful or frustrating to

work with this legacy code; if [it] had been written in a better way it would have been

much faster and easier to implement this feature.”

Regarding the relationship with others, it seems that from the interviewees’ perspective,

there is very good cohesion and understanding within their teams about the reasons behind

the occurrence of TD. Most of the interviewees think that a combination of factors leads

to the occurrence of TD, and therefore, they do not feel that their teammates or previous

developers dragged them down by introducing TD. This seems to be the case, especially

in those teams where team members have a closer relationship, as interviewee 10

mentions in the following excerpt: “We should not point a finger or place a picture on

the wall, ‘this guy broke some rules.’ And I also believe that a significant part of

company's success is directly motivated by [and] directly related to our engagement as

colleagues in our team because we say we are all friends here; we know each other; three

of us know each other since college days, and we are friends also outside.”

Our interview data suggest that the decision to take on TD is often made based on a

consensus among team members, especially in smaller teams. For instance, one

interviewee stated that “if we have a short time frame sometimes [and need to] make a

decision, do we go to technical debt and let these things go like this so we can keep the

deadline or not? We discuss that usually. In the end, if the team has a consensus, there

are no problems, but if there is no consensus in the team, the lead developer—the senior

one—makes a deciding vote.”

Since we could not discover strong evidence from our data indicating that TD has a

negative influence on interpersonal antecedents of morale, we put forward the following

proposition:

www.manaraa.com

205

PTD3: The occurrence of TD has no negative influence on the

interpersonal antecedents of morale.

On the other hand, regarding the influence of TD management on the interpersonal

dimension of morale, it seems that the majority of our interviewees consider TD

management as teamwork by which they contribute to a set of common goals within their

teams. They especially consider conducting reviews as a positive contribution by which

they can identify TD and help each other in improving their skills and, ultimately, the

quality of software. In the following excerpt, interviewee 10 refers to this matter: “Well,

I appreciate that review. I always try to learn, and learning from my mistakes is also

something that I do when I keep doing some self-evaluation of my team, and that’s one

way my evaluation refines. Yes, I appreciate that someone evaluates my work generally,

and the code is just one of the parts.”

On the other hand, regarding the relationship with others, most of our interviewees think

that the current team is responsible for managing TD and improving the quality of

software constantly, even though a few of them mentioned that it is not pleasant to

improve the legacy code. This may be due to the challenges of repaying the TD of the

legacy code, as discussed earlier. Therefore, they think that identification and

communication of TD is a service, which is done to help their teammates in improving

the quality of software artifacts. In the following excerpt, interviewee 2 points to this: “I

will [report it] so they have to fix it or to have a more thorough discussion about it, why

it happened and why you did that if it can’t be fixed. But mostly I feel that it is a service;

we do each other that kind of service that together we can make better code”. Based on

the above discussion, we propose that:

PTDM3: TD management has a positive influence on the interpersonal

antecedents of morale.

To summarize, the interview data provide evidence that TD can have a negative influence

on affective and future/goal antecedents of morale but no influence on interpersonal

antecedents of morale. On the other hand, TD management has a positive influence on all

three dimensions of morale, especially on the future/goal dimension.

14.4.2. Quantitative data—Influence of TD on morale

(RQ1, and RQ2)

In total, we received 34 valid responses to the survey from developers across seven

software companies. Please note that two of these respondents work at Company A, five

work at Company B, and the rest (i.e., 27 respondents) work in other companies from

which we did not collect any interview data.

Initially, the survey gathered descriptive statistics to summarize the backgrounds of the

respondents and their software. This data is compiled and presented in Table IV. As can

be seen from this table, all the survey respondents have completed a university degree,

www.manaraa.com

206

while the majority of them have more than 10 years of work experience in the software

industry.

TABLE IV - CHARACTERISTICS OF THE SAMPLE SURVEY

Individual Company

Experience

< 2 years 8.8%

2 - 5 year 17.6%

5 - 10 year 17.6%

> 10 years 55.9%

Education

Master’s degree 76.5%

Bachelor’s degree 20.6%

Ph.D. degree 2.9%

Gender

Male 82.3%

Female 17.7%

Software system type(s)

Embedded Sys. 76.5%

Real-time Sys. 29.4%

Data management Sys. 5.9%

System Integration 2.9%

Modeling and/or simul. 2.9%

Data analysis sys. 14.7%

As illustrated in Table IV, all the respondents were relatively experienced as software

developers: 56% had more than 10 years of experience, and only 7% had fewer than 2

years of experience. All respondents have a university-level education, where 82% have

a master’s degree.

Further, the results from the survey assessing the impact of TD on the different

dimensions of morale show that the occurrence of TD negatively influences the

future/goal and affective antecedents of morale but not its interpersonal antecedents,

while the management of TD positively affects all the three dimensions of morale.

When studying the correlation between the amount of time that is wasted due to TD and

the developer morale, our result shows that the more time that is wasted, the more the

respondents feel that the progress is hindered by TD. In the following sections, we discuss

these findings in more detail.

14.4.2.1. Survey result (RQ1 and RQ2)

As described in section 3.1, we complemented our findings from the interviews by

conducting a survey in which 33 software professionals rated a set of 5-point Likert Scale

statements (see Table V). Utilizing our theoretical framework and findings from the

interviews, we prepared these statements in a way that they complement our findings

from the interviews. As illustrated in Table V, four of these statements are related to the

negative effects of TD (ST1, ST2, ST3, ST4), and three of them are related to the positive

www.manaraa.com

207

effects of TD management (ST5, ST6, ST7) on antecedents of morale. Finally, ST8

directly refers to the positive influence of TD management on morale. This enables us to

verify whether respondents’ ratings about the influence of TD management on

antecedents of morale are in line with their perception of the influence of TD management

on morale itself. Fig. 5 shows a summary of the ratings provided by the respondents.

Fig. 5 Summary of the responses to the online survey.

TABLE V - MEDIAN AND IQR CALCULATED FOR SURVEY RESPONSES

SID Statement Median IQ

R

Supports

the

interviews

ST1 I have been criticized by others for taking TD. 1 0 Yes

ST2 I feel confident when I make a decision, which leads to TD. 3 2 Yes

ST3 I feel that the presence of TD hinders me from making progress. 3 2 Yes

ST4 I feel upset when others find out that I have taken TD. 1 1 Yes

ST5 I feel that others appreciate it when I pay back some TD. 4 2 Yes

ST6 I feel satisfied when I pay back some TD. 4 1 Yes

ST7 I am encouraged by others to pay back TD. 3 2 Yes

ST8 I feel that paying back TD increases our team’s morale. 4 1 Yes

www.manaraa.com

208

Table V shows the central tendency (i.e., median) and frequency (i.e., interquartile range)

of the respondents’ ratings. It must be noted that a greater median indicates that the

respondents consider the influence mentioned in a statement to be more significant, while

a smaller median indicates such an influence to be less significant. On the other hand, a

lower interquartile range (IQR) value indicates higher levels of consensus among

respondents, while a higher IQR value implies lower consensus among respondents.

Regarding the influence of TD on the affective antecedents of morale, ST1 received a

very low rating (median = 1) with a very high level of consensus among respondents (IQR

= 0). This suggests that the respondents think that they rarely have been subject to

criticism for introducing TD. Moreover, ST4 received a very low rating with a high level

of consensus among respondents (median = 1; IQR = 1). These observations suggest that

the respondents consider the affective consequences of TD to be very insignificant, which

is in line with our interview data. Therefore, we can conclude that the occurrence of TD

has a negative influence on developers’ morale since it reduces their confidence.

Regarding the influence of TD on the Future/Goal dimension of morale, ST2 received a

moderate rating (median = 3), which suggests that the majority of respondents, with a

medium level of consensus (IQR = 2), do not feel very confident when introducing TD.

Moreover, the ratings for ST3 (median = 3; IQR = 2) show that the survey respondents,

with a medium level of consensus, consider TD to hinder them moderately from making

progress. These results support our findings from interviews, which indicate that the

occurrence of TD has a negative influence on Future/Goal antecedents of morale. In other

words, we can say that the occurrence of TD primarily has a negative influence on

developers’ morale because it hinders their progress.

On the other hand, concerning the impacts of TD management on antecedents of morale,

ST5 received a high rating (median = 4) with a medium level of consensus among

respondents (IQR = 2). This observation supports our interview data and suggests that the

survey respondents generally think that their efforts for managing TD are appreciated by

their colleagues. Therefore, it can be said that TD management has a positive influence

on developers’ morale since it is associated with a sense of appreciation. In addition, ST6

received a high rating from respondents with a high level of consensus (median = 4; IQR

= 1), which indicates that the respondents strongly feel satisfied with repaying TD. This

supports our interview data, which suggests managing TD has a positive influence on

future/goal antecedents of morale since it is associated with a sense of progress. In other

words, TD management has a positive influence on developers’ morale since it is

associated with a sense of progress.

As can be seen from Table V, ST7 received a moderate rating (median = 3) with a medium

level of consensus (IQR = 2). This shows that the respondents think that they are

moderately encouraged by others to repay TD, which indicates the positive influence of

TD management on interpersonal antecedents of morale. This observation is in line with

our findings from the interviews. In particular, we can conclude that TD management has

a positive influence on developers’ morale since it is encouraged by others. Finally, ST8

was commonly rated as significant (median = 4; IQR = 1), which alongside interview

www.manaraa.com

209

data, suggests that, in general, management of TD has a positive influence on developers’

morale. Based on these results, we are confident that our propositions about the influence

of TD management on different dimensions of morale are plausible, and therefore we put

forward another proposition as:

PTDM4: TD management is perceived to have a positive influence on

the team’s morale.

To summarize, the occurrence of TD negatively influences developers’ confidence and

their sense of progress and consequently lowers their morale. On the other hand,

management of TD is associated with a sense of progress and a sense of appreciation and

support from others, which raises developers’ morale. To further investigate these

findings, we performed a set of statistical tests to identify any potential correlations

between our propositions. This would show if and what kind of relationships there might

be among the different dimensions of morale affected by TD occurrence or management

as well as to verify any potential influence on our results of two additional factors (i.e.,

developers’ level of work experience and the amount of waste that occurs due to TD)

identified from the interview data.

Before analyzing the association between wasted time and the antecedents of morale, we

first tested the variables for normality using the Shapiro-Wilk test of normality (see Table

VI). None of the variables are normally distributed, as the null hypothesis (i.e., the data

points of the variable are extracted from a normally distributed population) is rejected

with very low p-values. This means that we cannot use Pearson, but we need to use non-

parametric methods. Therefore, we use the Spearman's rank correlation coefficient.

The matrix of correlation in Fig. 6 shows only those associations that are significant (p-

value < 0.1). The blank cells represent no correlations.

www.manaraa.com

210

TABLE VI - TEST OF NORMALITY FOR CORRELATED VARIABLES

Variable Statements Shapiro-

Wilk test

p-value

Waste Wasted time because of Technical Debt 0.80817 3.701e-05

ST1 I have been criticized by others for taking TD. 0.86125 0.0005045

ST2 I feel confident when I make a decision, which

leads to TD.
0.74087 2.221e-06

ST3 I feel that the presence of TD hinders me from

making progress.
0.89586 0.003573

ST4 I feel upset when others find out that I have

taken TD.
0.48118 7.893e-10

ST5 I feel that others appreciate it when I pay back
some TD.

0.88216 0.001602

ST6 I feel satisfied when I pay back some TD. 0.82243 7.176e-05

ST7 I am encouraged by others to pay back TD. 0.90563 0.00648

ST8 I feel that paying back TD increases our team’s

morale.
0.88989 0.002506

Fig. 6. Associations between the different statements

www.manaraa.com

211

We can see how most of the statements related to the occurrence of TD and morale were

not statistically correlated among themselves or with the statements related to TD

management. On the other hand, we can see how most of the statements related to the

management of TD and morale are correlated among themselves. These results are further

discussed in the following paragraphs.

● The negative correlation between criticism (lack of support and communication)

and sense of progress (ST1-ST6): This significant negative correlation (-0.29, p-

value < 0.1) indicates that the less criticism the practitioners receive because of

taking TD, the more satisfaction they get from their progress in paying it back. On

the contrary, this negative correlation may also be interpreted as though developers

feel less satisfaction in paying TD back, but they might also perceive more criticism

due to taking TD.

● Correlation between a sense of appreciation and sense of support (ST5 - ST7): This

strong and significant (0.77, p-value < 0.05) correlation indicates that practitioners

who feel encouraged to repay TD also feel that their efforts towards TD repayment

are recognized by their colleagues. This could potentially mean that showing

appreciation and recognition is a good method for encouraging developers to repay

TD.

● Correlation between a sense of progress and sense of support (ST6-ST7): This

medium correlation (0.45, p-value < 0.05) can be interpreted as the more

encouraging support the respondents receive to repay TD, the more satisfied they

are with their progress. The inverse implication could potentially be that if someone

feels satisfied by paying TD back, they also feel encouraged by others to do so. On

the other hand, since satisfaction could also be considered as an affective state which

is associated with self-worth (i.e., second-order theme in affective antecedents), this

correlation might be interpreted as the more encouraging support the respondents

receive to repay TD, the better they feel about their achievements.

● Correlation of sense of appreciation, sense of progress, and sense of support with

the perceived team’s morale (ST5, ST6, ST7, and ST8): We discuss these

correlations altogether because ST5, ST6, and ST7 are already correlated and have

been discussed. From these correlations, we could infer that those practitioners who

were encouraged to pay TD back, who were satisfied in doing so (although the

correlation is less strong here) and felt like others would appreciate it, also think that

paying back would increase team morale. One explanation might be that potentially

all these factors contribute to better team morale or having better team morale makes

others feel like they are encouraged, satisfied, and supported in repaying TD. In the

second case, it could potentially be explained as “we are happy in the team, so we

feel like we are better at dealing with TD,” which might also be a possible

explanation, although less supported by evidence from interviews.

www.manaraa.com

212

As discussed earlier, some of the interviewees mentioned that developers’ perception of

the consequences of TD could depend on their level of work experience. To determine

such relationships, a set of Kendall's tau-b correlation tests were conducted. The results

of these tests indicate that the only considerable correlation is between respondents’ work

experience and their perception about being criticized for introducing TD (i.e., ST1),

which was positive and statistically significant at the 0.05 level (τb = 0.338, p = 0.039).

This rejects the idea that less-experienced developers are more concerned about being

subject to criticism for introducing TD and supports our previous findings indicating that,

in general, developers rarely criticize each other for the occurrence of TD. Another

interpretation could potentially be that the more experienced developers perceive a higher

level of criticism in case others highlight their mistakes or their actions in taking TD.

14.4.2.2. Correlation between the wasted time (due to TD) with the

TD occurrence and the TD management dimensions of

morale (RQ3)

As discussed earlier, almost all our interviewees and respondents to the 5-point Likert

Scale survey mentioned that the occurrence of TD hinders their progress and their future

activities. Several interviews discussed the amount of development time and resources

that are wasted because of the TD accumulated in their products. Therefore, we decided

to investigate any potential correlation between the amount of waste that occurs due to

TD and developers’ morale.

First, we calculated the average amount of perceived wasted time reported by each

participant during the second step of the longitudinal data collection (i.e., phase 5).

Following this, we used Spearman ranking to study the correlation between the average

amount of wasted time reported by each respondent, and their rating for the 5-point Likert

scale statements. The association might tell us whether participants who reported a higher

average waste of time would also rate higher the statements ST1-ST8 (the antecedents of

morale related to the occurrence and management of TD). In other words, we want to

understand whether more waste (the negative effect of TD) correlates with lower or higher

morale (with respect to different dimensions)

TABLE VII - CORRELATION BETWEEN THE WASTE OF TIME AND THE STATEMENTS

% Waste

correlation

with:

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8

Spearman

(approx.)
-0.109 -0.036 0.453 0.061 -0.076 0.087 -0.202 -

0.070

p-value

(approx.)
0.536 0.837 0.007 0.728 0.666 0.624 0.251 0.690

www.manaraa.com

213

As we can see from Table VII, the only significant correlation is between the average %

of the wasted time and ST3 (“I feel that the presence of TD hinders me from making

progress”). This indicates that the more time is wasted, the more the respondents feel that

the progress is hindered by TD. This interpretation is supported by our observations from

the interviews. However, the observed correlation can also be interpreted differently: The

respondents with a lower level of progress, or possibly morale, might tend to estimate the

amount of waste to be higher.

The lack of associations between the waste due to TD and the morale variables may not

exclude the existence of relationships. But in this study, we do not find evidence

indicating that the waste of time due to TD correlates with other morale variables than

ST3.

14.5. Discussion

In this study, we aim to answer and discuss the earlier stated research questions. In

response to RQ1, regarding the influence of TD on morale, it can be said that the

occurrence of TD may reduce developers’ morale mainly because the developers perceive

it to hinder their progress and makes it challenging to perform their tasks. In response to

RQ2, it can be said that proper management of TD appears to increase developers’ morale

since it is associated with positive personal and interpersonal feedback and enables

developers to perform their tasks better and to improve software quality in the future. In

RQ3, we assess how the amount of wasted time correlates with developer morale, and the

results indicate a significant correlation between the productivity (e.g., the perceived

wasted time) and the developers’ feeling that their progress is hindered by TD.

Although in recent years, considerable interest has been shown in researching TD, there

is a lack of studies exploring this phenomenon from individuals’ perspective and

particularly concentrating on explaining the social and psychological aspects of TD. By

reviewing previous literature on TD, we could find only a limited number of previous

studies mentioning that TD may influence developers’ emotions [10], [11], and morale

[12],[7],[13],[201]. Therefore, we decided to conduct a field study to explore the potential

impacts of TD and its management on developers’ morale.

Our findings show that the occurrence of TD is perceived to have a negative influence,

mainly on the future/goal and affective antecedents of morale and not on its interpersonal

antecedents. In other words, our results indicate that TD reduces developers’ morale since

it hinders them from performing their development tasks, making progress, and achieving

their goals. This is in line with previous studies by [11] that suggest the presence of TD

slows development and reduces developers’ productivity [7]. Also, the lack of

development resources is reported to hinder developers’ progress and seam to

consequently lower their morale [184],[200]. These results further support our findings

considering that resource constraints are one of the main reasons for incurring TD [217].

Our results also indicate that the occurrence of TD has a negative influence on affective

antecedents of morale and, in particular, developers’ self-worth. In an exploratory field

study and based on interviews with 35 software developers, Lim et al. [8] suggest that

www.manaraa.com

214

software developers have a negative attitude toward TD since they tend to create “perfect

software.” The results of another case study conducted by [10] at a Finnish software

company show that software developers do not feel good about taking TD since they have

to deal with it in the future. Finally, Peters [201] suggests that the presence of TD has a

negative influence on developers’ motivation. Even though none of the previous studies

directly refers to the relationship between TD and developers’ self-worth, this observation

may be explained in terms of developers’ tendency to produce high-quality software [8].

In particular, since the occurrence of TD could hinder developers from achieving this

goal, it may have a negative influence on developers’ self-worth.

Additionally, our results suggest that TD management has a positive influence on the

antecedents of morale, and consequently, it can be said that proper management of TD

might increase the developers’ morale. McConnell [200] makes a similar argument in a

blog post by suggesting that repaying TD “can be motivational and good for team

morale.” Finally, in their empirical study and based on the results of two surveys

answered by 37 software professionals, Spínola et al. [12] suggest that repaying TD may

have a positive influence on morale; however, future research is needed to clarify this

relationship. Damian and Chisan [181] also suggest that continuous software

improvements, in general, have a positive influence on developers’ pride and morale.

Finally, in this study, we examine the relationship between TD and waste. Our result

indicates that the more time that is wasted due to experiencing TD, the more the

respondents feel that the progress is hindered by TD. Even though this interpretation is

supported by the interview data, another interpretation is that the respondents with lower

levels of progress tend to estimate the amount of waste to be higher. This may be

explained in terms of confirmation bias whereby individuals tend to report information

which confirms their viewpoints or beliefs. In other words, since developers believe that

TD hinders their progress, it appears that they tend to estimate the amount of waste to be

higher than its actual amount.

On the other hand, our results indicate a lack of correlations between the perceived waste

due to TD and the interpersonal and affective dimensions of morale plausible (ST1, ST4,

ST5, ST7, and ST8). In fact, we would expect such associations to show up if the TD was

explicitly accrued by one member of the team (or at least an employee somewhat close to

the team), while the interest would be paid by another. However, due to potential high

turnover and the presence of external consultancy or heavy outsourcing, it is likely that

developers find themselves dealing with the waste generated by code written by someone

who is unknown to them. This could potentially explain why TD waste does not seem to

be associated with interpersonal or affective factors.

On the other hand, it is still somewhat interesting to notice that our results do not indicate

an association between the TD waste and ST2, ST6 (future goal dimension). In fact, we

might have expected a relationship between the amount of TD waste and the confidence

in taking on TD (ST2): the more waste is paid, the less one might feel confident in taking

TD. However, this can potentially be explained by the fact that accruing TD alone does

not generate waste: the waste could be caused by a lack of dealing with such TD after the

accrual (lack of refactoring). As for ST6, one might expect the satisfaction of paying back

www.manaraa.com

215

TD to be associated with higher waste or lower waste (avoiding a high amount of waste

by repaying the debt could generate more satisfaction). However, the two variables are

not directly correlated, as one might pay back TD, while at the same time suffering from

high waste from other TD items, which cannot be refactored by that specific person.

In general, while for ST3, there is a correlation between the presence of TD waste and

lack of progress, the other variables cannot directly be linked to any form of generic TD

waste, but only in specific circumstances. To further understand such associations, we

would need to conduct specific studies where variables related to the affective state of

participants are controlled or at least better known.

Based on our findings, it seems that developers’ perception of the amount of time wasted

on managing TD could trigger a vicious circle where the presence of TD leads to higher

perceived waste, which continuously lowers developers’ morale and productivity.

However, it is important to acknowledge that the correlational analysis used when

answering the research questions do not infer any causal relationships between the

different studied variables and thus does not suggest any casualties.

This is in line with Tom et al. [7], who argue that TD lowers developers’ morale, which

in turn increases the amount of technical debt. This phenomenon can be explained by

Hardy’s [198] argument that “the consequences of morale feedback into the antecedents.

This feedback loop seems to act as a form of confirmation bias whereby information

which confirms the prevailing morale state is selected and that which refutes it rejected.”

Therefore, it can be said that low morale appears to be associated with a perceived lack

of achievement and negative self-assessment [218],[213]. Thus, in the context of our

study, when developers perceive TD to hinder their progress, their morale appears to

declines and this, in turn, appears to cause them to assess their accomplishments lower

and their waste higher. In other words, developers with low morale appear to have an

over-exaggerated perception of the extent to which TD hinders their progress and the

amount of time wasted on servicing TD. This, in turn, may lead to negative self-

assessment (i.e., the developer experiences more waste), which lowers their morale even

more, which consequently could worsen their perception of the time wasted due to

experiencing TD (i.e., negative self-assessment).

14.5.1. Implications

Our study has several novel contributions for both software engineering research and

practice. First, our study is the first that specifically concentrates on investigating the

influence of TD on developers’ morale and its relation to developer productivity. In doing

so, we explored the impacts of TD and its management on the antecedents of morale. As

a result, we were able to show that the occurrence of TD can reduce developers’ morale,

while TD management increases their morale. These findings are very encouraging since

they clarify the relations between different dimensions of morale and TD. In particular,

by emphasizing the importance of affective and future/goal dimensions of morale, this

study suggests that, while making trade-offs leading to the occurrence of TD, software

firms must better consider the short- and long-term consequences of TD on developers’

behavior and productivity as well as on software development and maintenance costs and

www.manaraa.com

216

success. This becomes even more important considering the interviewees’ controversial

viewpoints about the necessity of repaying different types of TD items. For instance, some

of the interviewees considered fixing “cosmetic” issues (e.g., documentation TD) to be

pointless, while repaying architectural TD and testing TD to be very important since long-

term costs and complexities associated with them can surpass the short-term benefits

gained by taking on such TD. On the other hand, the results of this study suggest that

software firms need to consider TD management more seriously, by investing more

resources and promoting a high-quality culture in which developers are encouraged and

rewarded for identifying and repaying TD. Showing appreciation and recognition is a

good method for encouraging developers to repay TD since it seems to create a sense of

satisfaction for developers. In particular, we argue that if developers are supported and

encouraged to repay TD, they feel more satisfied with their achievements. In general, we

could infer that a company culture that is encouraging TD repayment also increases team

morale.

Our suggestion is supported by the results of an empirical study showing that a lack of

remuneration and reward schemes reduces developers’ morale and productivity [183].

This need becomes more obvious considering previous research suggesting that the level

of employees’ morale is correlated with their productivity [181], [182], [183], and project

success [184].

Fig. 7. Twofold model of the relationship between TD and morale

Based on the results of this study, we propose a twofold model for the description of the

relationship between TD and morale, as illustrated in Fig.7. Each entity represents a

variable that we have studied. Each arrow is starting from an entity, E1, and ending with

another entity, E2, denotes a positive influence of E1 over E2. Each arrow is the result of

www.manaraa.com

217

our findings, as reported in the figure’s legend. This model shows the overall picture of

our findings and how various variables interact with each other. Other relationships might

exist, which are not observable from the data collected in this study and are not shown in

our model.

As shown in Fig. 7, TD management promotes a culture within organizations in which

developers are supported and appreciated for managing their TD. Promoting such a

culture not only helps to prevent TD but also has a positive influence on the team morale

itself, which ultimately increases developers’ morale. On the other hand, the appropriate

use of tools and methods (which need to be put in place by TD management) helps to

prevent TD and, as a result, reduces the amount of waste of time generated by it. Limiting

the amount of working time wasted because of TD has a positive influence on the sense

of progress among developers, which increases both the team’s morale and developers’

morale.

In conclusion, as can be seen in Fig. 7, an appropriate level of TD management leads to

a virtuous cycle (C-F-G-I-B2) for which the right culture and TD prevention mechanisms

reinforce each other, leading to happier developers.

14.6. Limitations, and Threats to Validity

As empirical research, this study is subject to different threats. We discuss these

limitations according to four types of threats to validity suggested by Runeson and Höst

[73].

Concerning the construct validity [73], there is a concern about using the right operational

measures for studying the concept of morale. To mitigate this threat, we decided to follow

an approach that relies on capturing different levels of morale by investigating its

antecedent factors [18]. As a result, to avoid any misconception, instead of directly asking

questions about morale, we asked questions about the influence of TD and its

management on a set of factors affecting morale. Also, to avoid misunderstanding the

research questions, both the interview and survey questionnaires were tested before data

collection. Finally, we recorded all the interviews, and the research team reviewed the

transcription of these interviewees to avoid any misinterpretation of the collected data.

However, since in this study, we took a holistic approach to examine the influence of TD

and its management on morale, future research is needed to provide a more specific

understanding of how different types of TD and TD management activities can influence

developers’ morale.

Furthermore, even if there are other studies investigating the relation between other

human factor constructs and productivity, such as, for example, practitioners’ happiness

[210], satisfaction, and motivation, this study focuses only on the relationship between

productivity and morale as a human factor. However, in future studies, it would be

interesting to compare our results with other human factors constructs.

This study also uses the estimation of wasted working time due to experiencing TD as a

proxy for productivity, but we do acknowledge that lack of waste does not guarantee

www.manaraa.com

218

productivity by default even if having to spend work time on TD tasks and activities is

one obvious impediment towards achieving productivity.

Regarding internal validity [73], there is a risk that developers’ morale is influenced by

uncontrolled factors other than the occurrence and management of TD. To mitigate this

risk, at the beginning of each interview, we asked the interviewees to choose specific

items from their TD backlog and answer our questions accordingly. However, since we

cannot be sure that no other uncontrolled factor has affected developers’ morale, future

research, preferably in a controlled experimental environment, is needed to address this

limitation. Further, in this study, we have analyzed data to find a correlation between

specific parameters in the reported data.

Further, we acknowledge that these statistical correlations do not imply causality between

the variables. This is because there is a risk that the observed outcomes are affected by

other factors that have not been accounted for in our empirical study. The results of this

study could potentially be affected by this threat since some of our findings are

correlational and potentially also indicate a causal relationship. For example, when we

examine the amount of wasted time, correlated with the different statements. By

performing this correlation, this validity could potentially have been violated by either

finding relationships that are non-existent or missing real relationships that are wrongly

deemed non-significant. However, by combining correlation analysis with analytical

causality (from e.g., the conducted interviews), causality links can be suggested.

Therefore, to mitigate this threat, we triangulated the data by conducting follow-up

interviews validating the derived results.

The external aspect of validity addresses the possibility of generalizing the findings [73].

The results in this study are based on data from several interviews, a survey, and a

longitudinal study. The responses that our respondents gave in the longitudinal part of the

study and during the survey and in the interviews might not be representative of the entire

developer population. We cannot generalize the results. However, in some phases, we can

rely on a good number of participating organizations (7) in different business and

application domains. We also provide an online replication package at

https://doi.org/10.5281/zenodo.3627885, with information and data organized per phase

of the study (as presented in Fig 2), which will facilitate the replication of the study.

Furthermore, in surveys, there is always a risk that the sample is biased, and, therefore, a

potential threat relates to, for instance, the geographical, cultural, and demographic

distribution of response samples.

Finally, since our findings are partially grounded in qualitative interviews, there is a

concern about the reliability [73] of the findings. We tried to mitigate this threat in

different ways. First, we used triangulation both during the data collection and data

analysis processes. To increase the reliability of the data collection process, at least two

researchers were involved in planning and conducting the interviews (i.e., observer

triangulation). Also, to complement our findings from the interviews, we conducted a

longitudinal study and asked a group of software professionals to provide their opinions

about a set of statements based on our results (i.e., methods triangulation), together with

reporting on how much time they wasted. To increase the reliability of the findings

www.manaraa.com

219

further, even though the qualitative data analysis was performed mainly by the third

author, each phase of the data analysis process and its outcomes were monitored and

reviewed by the whole research team. Finally, while monitoring the responses to the

surveys in the longitudinal study, we realized that one of the respondents had rated all the

statements neutrally (i.e., straight-lining). Therefore, we decided to remove the ratings of

this respondent to avoid any threat to the validity of data analysis. It must be noted that

excluding this respondent affects only the median value of the ratings for ST5.

Their anonymity was assured multiple times to the participants, both by email and in the

introduction of the survey. However, we notice that for two statements in Table V, for

which a high rating could be perceived negatively from the perspective of interpersonal

relations (i.e., ST1 and ST4) the median is '1', while for the more neutral statements the

median represents a higher rating: this could mean that developers may have been

reluctant to provide answers that might be perceived as 'hostile' to their colleagues. On

the other hand, ST5 and ST7 (positive interpersonal relations) are not so extreme in the

opposite direction, e.g., showing a very high median, but just 4 and 3, respectively. In

conclusion, although a threat exists, we do not deem it to be extremely likely or disruptive.

Another limitation is related to the scope of our study. In our model in Fig.7, we show

how TD management essentially has only a positive impact on developers' morale and

productivity, which in turn increases further the morale. However, this study has not

investigated any negative impact of too much management to avoid TD being in place.

In fact, industrial processes are routinely asking developers to perform maintenance tasks,

refactoring activities, quality measurements might have the opposite effect on morale.

14.7. Conclusion

The presented research aimed to examine the potential impact of technical debt and its

management on developers’ morale and productivity. To the best of our knowledge, this

study is the first study to assess these relationships empirically using a mixed-method

approach. The findings from this study make several contributions to the present TD

research. First, the results from this study indicate that the occurrence of TD reduces

developers’ morale since the presence of TD hinders the developers’ progress and reduces

their confidence. Second, the results imply that proper management of TD increases

developers’ morale since it enables the developers to perform their tasks better and to

improve software quality in the future. Thirdly, the results also suggest that proper TD

management leads to a virtuous cycle where the right culture and TD prevention

mechanisms reinforce each other, leading to less waste of time, followed by a continuous

increase of the developers’ morale and productivity. lthough the findings of this study are

interesting and encouraging, future research can provide a better in-depth understanding

of the relations between the occurrence and management of TD and developers’ morale.

Especially by using a wider range of data sources and utilizing different psychological

measures, future research can perhaps indicate the strength of such impacts and explore

any potential differences between development contexts. Further, even if our twofold

model illustrating the relationship between TD and morale (fig. 7) is an empirically

www.manaraa.com

220

grounded model, it can be further validated using, e.g., structural equation modeling with

both surveys and software metric data as part of future research.

Acknowledgment

We thank all the anonymous interviewees and survey respondents for their contribution

to this work.

www.manaraa.com

221

15. Technical Debt Tracking: Current State of

Practice

In this paper, we investigate the state of practice in several companies, to understand what

the cost is of managing TD, what tools are used to track TD and how a tracking process

is introduced in practice.

Large software companies need to support continuous and fast delivery of customer value

both in the short and long term. However, this can be hindered if both evolution and

maintenance of existing systems are hampered by Technical Debt. Although a lot of

theoretical work on Technical Debt has been recently produced, its practical management

lacks empirical studies. In this paper, we investigate the state of practice in several

companies, to understand what the cost is of managing TD, what tools are used to track

TD and how a tracking process is introduced in practice. We combined two phases: a

survey, involving 226 respondents from 15 organizations, and an in-depth multiple case-

study in three organizations, including 13 interviews and 79 Technical Debt issues. We

selected the organizations where Technical Debt was better tracked, in order to distill best

practices. We found that the development time dedicated to managing Technical Debt is

substantial (an average of 25% of the overall development), but mostly not systematic:

only a few participants (26%) use a tool, and only 7.2% methodically track Technical

Debt. We found that the most used and effective tools are currently backlogs and static

analyzers. By studying the approaches in the companies participating in the case-study,

we report how companies start tracking Technical Debt and what are the initial benefits

and challenges. Finally, we propose a Strategic Adoption Model for the introduction of

tracking Technical Debt in software organizations.

15.1. Introduction

Large software companies need to support continuous and fast delivery of customer value

both in the short and long term. However, this can be hindered if both evolution and

maintenance of the systems are hampered by Technical Debt.

Technical Debt (TD) has been recently studied in the Software Engineering literature

[91], [7], [15], [32]. TD is composed of a debt, which is a sub-optimal technical solution

that leads to a short-term benefits as well as to the future payment of an interest, which is

the extra-costs due to the presence of TD (for example, slow feature development or low

quality) [101]. The principal is regarded as the cost of refactoring TD. Although

accumulating Technical Debt might prove useful in some cases, in others the interest

might largely surpass the short-term gain, for example by causing development crises in

the long term [110].

This chapter has been published as:

Technical Debt Tracking: Current State of Practice – A Survey and Multiple

Case-Study in 15 large organizations

A. Martini, T. Besker, and J. Bosch

Science of Computer Programming, Volume 163, 1 October 2018, Pages 42-6.

www.manaraa.com

222

There are several kinds of TD, such as Architecture TD, Testing TD, Source Code TD

etc. [7],, depending on what artifact and on what level of abstraction the sub-optimality

has occurred. TD can only partially be measured by static analysis tools; the rest of TD

needs to be tracked, otherwise it will be invisible, as outlined in a quadrant by Kruchten

et al. [18]. In 2011 Guo et al. proposed an initial portfolio approach, with the creation of

TD items to be tracked and managed, which was empirically studied [219]. Seaman et al.

have identified the theoretical importance of TD as risk assessment tool in decision

making [220]. However, current literature does not cover a number of aspects related to

TD: how teams manage (and track) TD, what tools are used in practice and how TD

management is introduced in large organizations. Finally, current literature lacks a

quantification of the effort spent by the practitioners for managing TD.

In this paper, we therefore aim at addressing the following RQs:

RQ1 How much of the software development time is estimated to be employed in

managing TD?

It is also important to understand how a TD tracking process is introduced and

implemented in large software companies:

RQ2 To what extent are software practitioners familiar with the term Technical Debt?

RQ3 To what extent are software practitioners aware of the TD present in their system?

RQ4 To what extent do software organizations track TD?

RQ5 Is there a difference between individual and collective management of TD?

RQ6 Does the background of the respondents influence the way in which TD is managed?

RQ7 What tools are used to track TD?

RQ8 How do software organizations introduce a TD tracking process?

RQ9 What are the initial benefits and challenges when large organizations start tracking

TD?

To shed light on these question, we have conducted a survey in 15 organizations with 226

participants and we have carried out a multiple case-study in three companies that have

started tracking TD: in this context, we have interviewed 13 practitioners responsible for

tracking TD and analyzed 79 TD items from a pool of 597 improvements. Our findings

include the following contributions:

1. The cost of managing TD in large software organizations is substantial and it is

estimated to be, on average, 25% of the whole development time

2. We list the tools that are currently used to track TD, and we provide a first assessment

of which ones create less management overhead

3. We report the state of practice related to the introduction of a TD management

process in 15 Scandinavian organizations

4. We report the lessons learned from three companies that have started tracking

Technical Debt: their starting process, the perceived benefits and the challenges.

5. We propose a Strategic Adoption Model for Tracking Technical Debt (SAMTTD),

aimed at helping companies in assessing their Technical Debt management process

www.manaraa.com

223

and in taking decisions on its improvement. The model also defines the next research

challenges to be addressed in theory and to be evaluated in practice.

This paper adds new and more in-depth results on the findings reported in a previous

paper [98]. In particular, we address new research questions (RQ2, RQ3, RQ5, RQ6,

RQ7), while we add new insights related to the relationship between RQ4 and RQ7 (or

else, we study how the practitioners’ perception of tracking Technical Debt is related to

their usage of tools).

The remainder of the paper reports our methodology in section II, the results in section

III, and then we discuss the results in section IV, concluding in section V.

15.2. Methodology

For the execution of this study, we aimed at combining different sources of data (source

triangulation) and different methodologies (methodology triangulation), in order to obtain

reliable results [73]. To fulfill these triangulation strategies, we conducted a survey among

226 participants. The different sources included 15 large organizations and different roles,

i.e. developers, architects and managers. To complement such quantitative investigation,

we followed up with a qualitative, in-depth multiple case-study at three of the companies

involved in the survey, which have started tracking TD.

Here we conducted interviews with 13 employees and we analyzed documents including

79 TD issues out of a pool of 597 improvements presents at the companies.

15.2.1. Survey

In this study, we have involved 15 software organizations, belonging to eight distinct

large software companies. We consider a large software company an organization with

more than 250 employees. As visible in the descriptive statistics in Table 2, 91.6% of the

respondents reported working for an organization bigger than 250 employees.

The remaining 8.6% were consultants from small/medium organizations working on the

same systems and projects developed by the large organizations participating in the

survey. They can therefore be considered as working in the same context as the other

91.6% of the participants.

Seven out of eight companies developed embedded software, while another one

developed software for optimization (company D). The companies are anonymized and

named A-H, and the sub-organizations are called B1, B2, F1-F4 and G1-G4.

15.2.1.1. Survey Data Collection

In the first part of the survey, we asked about the participants’ background information:

• Software development experience: “< 2 years”, “2-5 years”, “5-10 years”, “> 10

years”

• Role: “Product Manager”, “Project Manager”, “Software Architect”, “Developer”,

“Tester”, “Expert”, “Other (Specify)”

www.manaraa.com

224

• Gender

• Education

• Team size

• Organization size

• Size of their current project in MLOC (Millions of Lines of Code)

In the second part of the survey, we have asked and analyzed the data related to the effort

caused by several Technical Debt challenges. The challenges were listed as reported in

current literature and not as generic “Technical Debt”, in order to make sure that the

respondents did not misinterpret the question.

The different kinds of TD are reported in TABLE I. , together with their scientific names

and the related academic source. This assured that a better construct validity of our survey

was achieved, as we reduced the subjectivity of the respondents interpreting “Technical

Debt”.

TABLE 1 - KINDS OF TECHNICAL DEBT RECOGNIZED IN [15], [143]

Survey entries Source and literature term

Lack or low quality of testing Test Debt [15]

Low code quality Source Code Debt [15]

Lack or low quality of requirement Requirement Debt [15]

Lack or low quality of documentation Documentation Debt [15]

Dependency violations Architecture Debt [15], [143]

Complex architectural design Architecture Debt [15], [143]

Too many different patterns and
policies

Architecture Debt [15], [143]

Dependencies to external
resources/software

Architecture Debt [15], [143]

Lack of reusability in design Architecture [15], [143]

Uneasy/Tensed social interactions
between different stakeholders

Social Debt [15], [143]

Lack of adequate environment and
infrastructure during development

Infrastructure Debt [15]

It is important to notice that the details and the results from the questions in the second

part of the survey are not included in this paper, as the data has been used to cover a

different scope and to answer different questions related to Technical Debt in another

work [144]. Therefore, the only questions overlapping between the papers are the ones

related to the background of the respondents.

www.manaraa.com

225

In the third part of the survey, we asked the following questions, some of which can

directly be mapped to the RQs. Some of the following the questions are rather statements:

in such case, we have asked the agreement of the participants to such proposition.

Q1: “How much of the overall development effort is usually spent on TD management
activities?”

Q2: “How familiar are you with the term "Technical Debt"?”

Q3: “I am aware of how much Technical Debt we have in our system”

Q4: “All team members are aware of the level of Technical Debt in our system”

Q5: “I track (using tools, documentation, etc.) Technical Debt in our system”

Q6: “All team members participate in tracking Technical Debt in our system”

Q7: “I have access to the output of the tracking of the Technical Debt in our system”

Q8: “All team members have access to the output of Technical Debt in our system”

Q9: “If you track Technical Debt in your project, what kind of tool(s) do you use?”

The formulation of Q1 was slightly different, as we did not mention “TD” but we referred

to the challenges mentioned in the second part of the survey (see TABLE I.). However,

we use the formulation in Q1 in the rest of the paper for the sake of readability.

After question Q2, the survey included the following definition of Technical Debt:

“Technical Debt (TD) is constituted of non-optimal code or other artifacts related to

software development that give short-term benefits, but cause a long-term extra cost

during the software lifecycle.”.

This definition has been operationalized based on the explanations and definitions given

by Cunningham [91], McConnell (presentation given at the workshop at ICSE 2013

[221]). We could not include the most recent one from the dedicated Dagstuhl seminar

[4], as it was held after the survey was conducted. However, the difference between our

definition and the one given in Dagstuhl does not seem very distant, as visible below:

“In software-intensive systems, technical debt is a design or implementation construct

that is expedient in the short term, but sets up a technical context that can make a future

change more costly or impossible. Technical debt is a contingent liability whose impact

is limited to internal system qualities, primarily maintainability and evolvability”

In our definition, we omitted the second part of the Dagstuhl definition. However, by

enumerating the different kinds of TD in the first part of the survey (excluding external

qualities from the questionnaire), we can be sure that also the second part of the Dagstuhl

definition was also covered, although not explicitly mentioned.

This assures that we provided the participants with a good means to understand what

Technical Debt meant when we asked about its management. However, we cannot

guarantee that the practitioners actually read and understood the definition.

For question 0, since we wanted to quantify the amount of effort related to TD faced by

the companies, we provided a scale including the following options: “<10%”, “10-

www.manaraa.com

226

20%”… “80-90%” and “I don’t know”. This question was directly aimed at answering

RQ1.

For 0, we provided the answers “Not at all familiar”, “Slightly familiar”, “Moderately

familiar”, “Very Familiar” and “Extremely Familiar”. The answers were mapped on a 5-

grades Likert scale, respectively 0-4. This question aimed at directly answering RQ2.

For 0-0 we asked the respondents to report their agreement on a 6-grades Likert scale:

“strongly disagree”, “disagree”, “somewhat disagree”, and the symmetric scale for

agreement. These statements were aimed at answering RQ3, RQ4 and RQ5. In particular,

we wanted to understand if tracking Technical Debt was an individual activity (by asking

the same questions for the individual and about the whole team) and if there was a

discrepancy between the awareness of the practitioners and their tracking process.

As for question 0, we asked the participants to report the tools used in a qualitative way

(text-box). The input was then post-processed and compiled in the resulting word cloud.

This question was used, together with the previous ones, to answer RQ7.

15.2.1.2. Survey Data Analysis

First, we analyzed the answers from Q1 in order to understand the magnitude of the

estimated effort spent by the respondents on managing TD. We transformed the answers

from categorical to numerical: for example, we parsed “<10%” to 5, “10-20%” to 15 and

so on. After the calculations, we can re-apply the tolerance interval of +5/-5 and the

various means etc. would not change. When calculating the means, we did not consider

the “I don’t know” answers. However, only a small portion of the answers was of this

kind (11.5%).

In order to avoid the bias introduced by different roles answering the questionnaire, we

ran a cross-tabulation chi-square test of independence to understand if the role of the

participants affected the answers.

The second step was to apply frequency analysis on questions 0-0. In order to do so, we

transformed the categorical data to a Likert scale (1-6), where “strongly disagree” was

mapped to 1 and “strongly agree” to 6. As for 0, we also reported the grouped answers in

three main intervals, “No tracking” (1-2), “Somewhat tracking” (3-4), and “Tracking” (5-

6). We used these aggregated intervals only for the last results related to the Adoption

Model SAMTTD model.

For some of the results, we used standard boxplot. The boxplot is a comprehensive way

to visualize various descriptive statistics altogether at a glance. We used this method when

we aimed at showing the difference about the distribution of the data with respect to two

specific variables. For example, Fig. 3 shows the comparison, with respect to different

companies, of the distribution of the management effort: we can compare the medians

(the black lines in the middle), but we can also see different percentiles (where most of

the answers were concentrated) and outliers. More information on how to read a boxplot

can be found at http://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-

whisker-plot/.

http://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/
http://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/

www.manaraa.com

227

In other cases, we compared the different variables using statistical tests: for example, it

seemed interesting to compare how much the respondents were aware of TD with respect

to how much they were tracking it. To do so, we performed a number of tests for linear

correlation using the tool R. Most of the numerical variables did not have a strong linear

correlation with each other, with the exception of the answers for 0, 0, 0 and 0: this is not

surprising, as if TD is not tracked by an individual, it is probably not tracked by the team,

and the output will not be visible to the individual and to the others as well. The Pearson

tests for linear correlation gave results from 0.72 up to 0.89 with p-value vastly lower

than 0.05. This can be considered a good test for the reliability of the answers. Since these

variables all strongly correlate, in the remainder of the paper, when studying different

variables, we will only use the “tracking” variable, without considering if the output was

available or not.

We also wanted to understand if the results depended on a specific variable. For example,

we tested if developers answered differently with respect to architects or managers. We

thus ran several chi-squared tests of independence between the background variables of

the participants and their answers related to questions 0-0, to answer RQ6. For example,

we wanted to know if the familiarity, awareness, tracking, etc. of the respondents would

depend on their background, e.g. by their affiliation to a company, to their education, etc.

This analysis was done to answer RQ6.

We finally analyzed the qualitative answers from 0, in order to better understand the

results answering RQ7. We selected the answers where the respondents reported that

tools were explicitly used (61/226, 27% of the respondents), and we compared the

respective levels of awareness, tracking, and familiarity. This was done to better

understand what the respondents meant by “tracking”. We also created a word-cloud

representation of the qualitative answers for Q10: this, we found, could represent quite

well which tools were the most used and in what way. To do so, we processed the

qualitative data removing terms that would appear in the word-cloud but would not make

sense from the tool point of view, for example “code” and “technical debt”. Finally, from

the coding of the qualitative answers, we could also identify the frequencies of the used

tools. To do so, we manually coded the 61 answers in the following six categories:

• Comments: these are usually “TODO” comments, left by the developers in the

code or other artifacts. These are useful for the developers to know that

something is left to do, but it does not imply a systematic monitoring of the TD

reported in the comments.

• Documentation: from the qualitative answers, this represents a text or

spreadsheet where issues are listed and explained in a semi-systematic format.

Another example could be a wiki. However, such documentation is different

from a backlog as it is more difficult to monitor and it does not use a specific

technology to manage and perform operations on the backlog.

• Issues: using the same ticket system for bug fixing, but usually down-prioritizing

the issues related to Technical Debt.

www.manaraa.com

228

• Backlog: this is either a dedicated backlog for TD issues, or the usual feature

backlog were TD items are mixed with features. This practice usually involves

a technology such as project management tools.

• Static analyzer: these are tools such as SonarQube, SonarGraph, Klockwork, etc.

used to analyze the source code in search for Technical Debt. In a few cases,

respondents report that they built their own metrics tools. These tools usually

check (language-specific) rules or patterns that can warn the developers on the

presence of TD. These tools are used as trackers by the developers, with the

limitation that they only cover part of the TD.

• Lint: they are also static analyzers, but are more used to find potential bugs and

security issues rather than technical debt.

• Test coverage: some of the respondents measure test coverage and they consider

a low test coverage as presence of test debt.

15.2.2. Multiple case-study

In order to better understand to what extent companies tracked TD (RQ4) and how the

tracking process was introduced (RQ8-9), we conducted a multiple case-study,

investigating some of the companies involved in the survey. We interviewed 13

employees from cases B1 (project manager, system architect and two developers), F1

(three software architects responsible for TD management in three different teams) and

F4 (two system architects, two project managers and two developers). In particular, in

order to understand what was considered as “good tracking”, we had the opportunities to

interview the participants, belonging to company F1, who answered “strongly agree” (the

highest level of tracking) to question Q5. This gave us an idea of what was considered as

current best practices for tracking TD. In order to support the interviews, we also analyzed

79 out of 597 TD backlogs items used for tracking improvements (and thus including TD

items) in company B1, F1 and F4.

15.2.2.1. Interviews

Data Collection

The interview questions were designed to cover taxonomies we found in the pre-study

concerning the reason for initiation, the activities within the TD management process and

also the process implementation. All interviews were audio-recorded, and the results of

the interviews were organized by different questions and activities for later analysis.

We formulated the interview questions in three sections:

• The first section contains questions about the profile of the interviewees and

their companies.

• The second section focused the questions on the initialization of the process for

managing TD: “What was the main reason for implementing a TD management

process?”, “Who decided that the process should be implemented?”, “What

negative effects did you experience in your system due to TD?” (RQ8).

www.manaraa.com

229

• In the third section, we asked about the outcome of the implemented process

(RQ4) and how the companies experienced the implementation of the process

in terms of the most obvious benefits and challenges (RQ9).

Data Analysis

The data analysis used an inductive approach based on open coding [222] . We were

looking for activities related to the introduction of a TD management process in the

company. For this purpose, we followed the points in [223], which is a well-known study

on change management in software engineering. The data were coded using a Qualitative

Data Analysis (QDA) software tool called Atlas.ti. Such tool gives support to keep track

of the links between taxonomies, codes, and quotations. Based on the taxonomies, we

developed a coding scheme that contains a corresponding set of codes and sub-codes. Fig.

1 shows an example of our code hierarchy and how the codes were mapped to the

taxonomy: the graph is part of the overall data collection model (not completely displayed

here for space limitations).

Figure 1. The coding process

As an example of how the coding was conducted, we present a quotation from one of the

interviewees which was mapped to the Motivation sub-code: “…we realized that for each

and every release it took much time correcting or fixing problems with additional patches

and it took more and more time adding new features on top of the system”.

15.2.2.2. Document Analysis

In order to gain more evidence on how the companies were tracking TD (RQ4), we

investigated the existing documentation. Also, we had access to the TD backlogs of the

studied teams: 26 items in the organization B1, 451 items in F1 and 20 items in F4. We

analyzed the TD items’ fields, values and how they were ranked. We did not analyze all

items in company F1, as 451 items included also improvements that were not TD. We

randomly selected 30 items that corresponded to the definition of TD, we analyzed them

and then we tested our assumptions by randomly looking at other items in the backlog.

We used the backlogs in the interviews (see previous section) in order to ask follow-up

questions to the participants. In addition, we analyzed the documentation that was created

by the organizations to explain TD to the users of the tracking process.

www.manaraa.com

230

15.3. Results

15.3.1. Demographics and background of the respondents

In total, we obtained 226 complete answers. The total respondents were 259, which gives

us a completion rate of 87%.

We aimed at having a similar number of respondents from each organization (Fig. 2). The

participants were almost all experienced practitioners, since 156 respondents (69%) had

more than 10 years of experience, while only 8 (3.5%) had less than two years of

experience (the remaining 62, 27.5%, had between two and 10 years of experience).

Several roles participated in the survey: 37 managers (16%), 52 software architects

(23%), 105 developers (46%) seven testers (2.65 %), 14 experts (5.75%) and 9 system

engineers (4%) completed the survey.

Figure 2. Number of participants per organization

18

9 7

20
23 22

31

18
13

8

16

10 3 11

17

A B1 B2 C D E F1 F2 F3 F4 G1 G2 G3 G4 H

www.manaraa.com

231

TABLE 2. BACKGROUND DATA RELATED TO THE RESPONDENTS, WITH THE PERCENTAGE,
THE NUMBER OF RESPONDENTS AND THE RELATIVE DISTRIBUTION

As visible in Table 2, we can infer the following characteristics on the studied

sample:

• Experience: most of the respondents had more than two years of experience,

while 69% of them had more than 10 years of experience. The estimations can

therefore be considered quite reliable, as they are made by expert practitioners

used to estimate their work.

• Education: most of the respondents have a Bachelor or Master degree. The level

of education is therefore quite high. However, the sample do not include many

practitioners involved in research projects.

• Team size: although many of the teams are small (1-10 members), the sample

includes a substantial number of respondents working in large teams as well.

www.manaraa.com

232

• Organization size: as mentioned in the analysis made in section 8.2.1, the

organization of the respondents is large. This was chosen by design: we wanted

to restrict our results to large organizations. This pose a limitation on our study:

we cannot generalize these results to small organizations.

• Age of the current system: the distribution of the different systems is quite even,

as the sample covers almost equally all the different phases of the system. This

raises the degree of generalizability of our results, as it assures that our data

covers both “young” and “old” systems.

15.3.2. Estimation of management cost of TD (RQ1)

First, we report the answers to Q1 from the survey. In Fig. 3 we show the distribution of

the respondents with respect to the different levels of estimated effort that was reported.

By picking the middle values, as explained in the methodology section (e.g. 10-20% was

transformed in 15), we calculated that the average cost of managing the TD was estimated

by 215 respondents to be 25.9 % with a median of 25 % of the whole development time.

From the results, we can see how most of the respondents answered between 0 and 40 %,

while half of them are between 10 and 30%. However, some respondents report to spend

more than 40% of their time managing TD.

Figure 3. Distribution of respondents for Q1: “How much of the overall development effort is

usually spent on TD management activities?”

Looking at the comparison of medians (bold lines) and percentiles among the companies

(boxplot in Fig. 4), we cannot see a big difference in how the respondents answered, apart

for the slight difference for E, F1 and F3. This means that the amount of time spent to

manage TD is quite not dependent on the organization.

www.manaraa.com

233

Figure 4. Comparison of companies with respect to Q1:

“How much of the overall development effort is usually spent on TD management activities?”

A chi-square test of independence, aggregating the intervals over 50% in the same

category (the lack of values would have invalidated the chi-square test), yielded a p-value

of 0.144, so we could not reject the hypothesis that the role of the respondents would

influence their answer. This means that the answers did not vary significantly across the

roles, contrarily to what one might expect, considering different views and experiences

of different roles in the organizations.

15.3.3. Familiarity with the term “Technical Debt” (RQ2)

The respondents seem to be, in total, moderately familiar with the term Technical Debt.

The mean is 2.26, while the median is 2. From the graph below we can see how there are

more respondents who are very familiar with respect to the other ones.

Figure 5. Distribution of respondents according to their answers to Q2:

“How familiar are you with the term "Technical Debt"?”

From the comparison among the companies, we can see how they are mostly on the same

level: F4 is above all the rest, while the organizations B2 and G4 are not very familiar

with the TD concept. However, since we did not have access to the practitioners working

19
36

60

89

22

Not at all
familiar

(0)

Slightly familiar
(1)

Moderately
familiar

(2)

Very familiar
(3)

Extremely
familiar

(4)Respondents

www.manaraa.com

234

in these two organizations, we cannot tell what was the cause of this lack of familiarity.

We omit the test of independence, as the results are clearly visible in Fig. 6.

Figure 6. Level of Familiarity with the term Technical Debt for each organization

 (answering Q2: “How familiar are you with the term "Technical Debt"?”)

15.3.4. Awareness of Technical Debt present in the system (RQ3 and

RQ5)

When assessing the level of awareness of the TD present in their system, the respondents,

on average, somewhat agree that they are aware of how much TD they have in their

system (mean = 3.69, median = 4). Almost half of them (45%) somewhat agree, while

only 21% feel more confident (they agree or strongly agree) and the remaining 32%

disagree or somewhat disagree. Only 3% of the respondents were not aware of TD.

On the other hand, the practitioners seemed less convinced that the whole team would be

aware of how much TD is present in the system. Here the mean is 2.8, while the median

is 3, both close to a mild disagreement. The chi-square test of independence confirmed

that the distributions are not dependent, with a p-value < 2.2e-16.

Figure 7. Comparison of answers for Q3: “I am aware of how much Technical Debt we

have in our system” (Individual Awareness) and Q4: “All team members are aware of the

level of Technical Debt in our system” (Team Awareness)

8
38

28

102

37
1128

74

51 56

13 2
0

30

60

90

120

Strongly
Disagree

(1)

Disagree
(2)

Somewhat
Disagree

(3)

Somewhat
Agree

(4)

Agree
(5)

Strongly
Agree

(6)Individual Awareness Team Awareness

www.manaraa.com

235

For what concern the different companies, they are quite aligned on the awareness among

each other. Once again, B2 seems to have a somewhat less level of awareness. The results

suggest that belonging to one or the other organization would not have an impact on the

level of awareness of their employees.

Figure 8. Distribution of answers with respect to Q3: “I am aware of how much Technical

Debt we have in our system”. 1-6 correspond to “strongly disagree” to “strongly agree”.

15.3.5. Tracking Technical Debt (RQ4)

In this section, we report the results from Q5: “I track (using tools, documentation,

etc.) Technical Debt in our system”. The average tracking level, reported by 219

respondents, is 2.3 with a median of 2. On the team level, it seems to be just slightly

worse, as shown in Fig. 9 and discussed below.

Based on the results from a chi-square test of independence between the role and the

tracking level, we could not reject the hypothesis (p-value 0.63) that the role of the

respondents would influence their answer with respect to tracking. In Fig. 10 we show

the comparison among different companies. We can see how the different companies

answered in a similar way, apart from company F4 and partly company D. However, the

test for independence we did not show any significant relationship between the variable

company and the answer given in the survey with respect to Q5 (tracking TD).

Finally, there is very little difference between tracking on an individual (Q5) or team level

(Q6). Only some of the individuals track TD more than the rest of their team. This is

strongly confirmed by a Wilcoxon test, which rejected the null hypothesis (p-value =

2.008e-05) that the difference in the two paired distributions are given by chance. In other

words, the same participant answered very similarly when asked Q5 and Q6, and this is

not because of randomness, which means: if someone in the team tracks TD, it is very

probable that the whole team is involved in the tracking.

Finally, as observed in the methodology section, the results from Q7 and Q8 (related to

whom, in the team, has access to the outcome of TD tracking) very strongly correlated

with the answers to Q5, so we do not report the exact results here. In other words, this

means that the respondents who track TD have also access to its output (e.g. backlogs,

dashboards, etc.)

www.manaraa.com

236

Figure 9. Distribution of answers related to Q5: “I track (using tools, documentation,

etc.) Technical Debt in our system” and Q6: “All team members participate in tracking

Technical Debt in our system”

Figure 10. Distribution of answers for Q5: “I track (using tools, documentation,

etc.) Technical Debt in our system”

15.3.6. Influence of the background of respondents on the management of

TD (RQ6)

We have partly answered RQ6: “Does the background of the respondents influence the

way in which TD is managed?” in the previous sections, especially with respect to the

variables roles and organizations. However, we had several other variables in the

background section, and we investigated if any of those variables would help

understanding what cause a more or less mature TD tracking. To answer this question,

we ran several statistical chi-squared tests of independence between the background

variables (education, team size, etc.) and the variables of interest (familiarity, awareness

and tracking of TD). However, none of the statistical tests yielded a significant answer:

technically, we could not reject any hypotheses for which the answers were dependent on

the background of the respondents. Since the results would include several combinations

of p-values that would not add any meaning to the manuscript, we decided to omit such

table.

In conclusion, the management of TD depends on some factors that have not been

captured by the surveyed background variables. However, in the next sections, we provide

71 71

26
35

13 3

90

67

27 27 6 2
0

23

45

68

90

113

Strongly
Disagree

(1)

Disagree
(2)

Somewhat
Disagree

(3)

Somewhat
Agree

(4)

Agree
(5)

Strongly
Agree

(6)Tracking Tracking Team

www.manaraa.com

237

some answers that could not be found in the quantitative data, but seem to be related to

the historical and social context where the participants work. More information is given

in sections 8.3.8 and 8.3.9.

15.3.7. Tools used to track Technical Debt (RQ7)

In this section, we analyzed if the respondents, who used some tools to track TD, were

also more aware of TD or tracked it more than the other ones. To do so, we took in

consideration only the answers from the 61 participants (27%) that answered the

qualitative question Q9 (specifying what tools they used). We also report the mean values

for the questions 0 and 0: we compared the answers of the participants who used a tool

with the ones who did not. We found the results in TABLE II. : it seems that, indeed, if

the participants used a tool to track TD, then they would report a high perception of

tracking TD. A chi-squared test of independence confirms a strong difference in the

distribution of the answers (p-value < 2.2e-16), strongly confirming this claim. However,

more surprisingly, their perception of the level of awareness of how much TD is present

in the system, would only slightly change. This is confirmed by a chi-squared test of

independence (p-value of 0.59), which did not show any difference in the distribution of

the answers between the participants using a tool or not. Very similar results were found

at the team tracking level, so we do not report them in the table below.

Given the high difference in tracking between the respondents who claimed to use a tool

and the ones who did not, we can safely claim that the respondents tracking TD also use

a tool. Although this seems straightforward, there is also the risk, in a survey, that some

respondents just skip a question that is not mandatory. However, this result confirms that

we captured most of the respondents’ answers related to the tool that they used. The

respondents who did not input an answer for the tool, also most probably don’t use any

tool, since they have in general a much lower level of tracking. Therefore, we can further

validate the result that only 26% of the participants used a tool to track TD. This is also

important for the reliability of our results related to the SAMTTD model explained in the

next sections.

From the qualitative data, we could also report what tools were used in practice. After

removing some of the words that would just create noise (such as “Technical Debt”, see

methodology section for more details), we obtained the following word-cloud, which

shows the distribution of tools used among the respondents:

www.manaraa.com

238

Figure 11. Word cloud of the tool used by the participants to track TD

By codifying the qualitative answers in comments, documentation, issues, backlog, static

analyzer, lint and test coverage, we can also analyze the frequencies. We can see how the

tool that was mostly used is a backlog (dedicated to TD or the same used for feature

development), followed by documentation, static analyzers and issue trackers (Fig. 12).

Figure 12. Number of participants using a specific kind of tool

3

14
11

32

12

3 2

Comments Documnetation issues Backlog Static Analyzer Lint Test Coverage

www.manaraa.com

239

Figure 13. Level of TD tracking and awareness related to the user of each kind of tool

We then analyzed the mean of the respondents for Awareness and Tracking levels (Fig.

13) with respect to the different kinds of tools. From these results, we can infer that there

is not a huge difference among the different used techniques. On the other hand, by

analyzing the kind of used tool with respect to the amount of effort spent on management

activities (Fig. 14), we can see a quite clear difference. Although this difference could not

be statistically tested (the chi-square tests did not report significant difference, but this

could be due to the small sample), backlog and static analyzers are the ones that seem to

create less overhead.

Figure 14. Mean of management effort for each kind of tool

In conclusion, the following considerations on the tools can be made:

• Comments in the code help awareness, but they are not considered tracking and

they are used by just 1% of the respondents. This is probably because they are

not used in a list that can be monitored by the team outside the code.

5,

4,1538

3,0909

3,8125
4,3333

4,

3,
2,6667

3,5385
3,

4, 4,1667 4,
3,5

Comments Documentation issues Backlog Static Analyzer Lint Test Coverage

Mean Awareness Mean Tracking

21,6667

29,2857
25,9091

18,871 19,1667
21,6667 20

0,00

7,50

15,00

22,50

30,00

37,50

Comments issues Static Analyzer Test Coverage

Mean Effort

Mean Effort

www.manaraa.com

240

• Documentation increases TD awareness, but it is not considered as a high level

of tracking and it has the highest overhead. The main tool used here were

Microsoft Excel or Word. We can infer that this practice is not recommendable

in comparison with the other ones.

• Using a bug system for tracking TD is not considered as contributing to a better

level of awareness or tracking compared to the other techniques, and it has a

slightly higher overhead. We would infer that this is also not the best way of

tracking TD.

• Backlogs, static analyzers and “lint” programs all increase the tracking level, but

we cannot see a big difference (although static code analyzers seem to contribute

better to the participants’ awareness). They are also the ones with the least

overhead. They therefore seem to be considered the best practices at the moment

to track TD.

• Backlogs are the most used tool among the participants. In particular, the most

used backlog tools are Jira, Hansoft and Excel.

• Test coverage does not seem to contribute too much to the awareness and

tracking level, although it does not involve much overhead. This might be due

to the fact that test coverage is related to only a small part of TD.

15.3.8. Why and how do companies start tracking TD? (RQ3)

First, we report why the companies decided to start tracking TD, or else their motivation.

Then, we found that the preparation activity was critical to start tracking TD, and we

therefore report the main steps involved in this practice.

15.3.8.1. Motivation for start tracking TD

The main reasons behind the start of tracking TD were related to experiencing the interest

of TD, or else: too many bugs to fix, decreased feature development, performance issues:

“Because we realized that for each and every release it took much time correcting or

fixing problem with additional patches and it took more and more time adding new

features on top of the system. […] The system became more and more inefficient”. These

statements confirm our previous results [110], as one of the architects also mentioned:

“After some time the TD was increasing and we had a crisis situation”.

In other words, the main motivation was related to the negative impact experienced by

the practitioners, or else the perception of the interest associated to the TD.

15.3.8.2. Preparation of the tracking process

From the cases investigated, it was clear that adopting a TD tracking process requires

some initial activities and time to implement the process. From B1, we understood that

they “Have done this for 1.5 years more or less, switching from reactive to more

proactive. It’s a better information about the status of the system.” The preparation

www.manaraa.com

241

includes the following aspects. Although we used [73] to code these results, we prefer to

report them in a way that is more readable:

• Initiative – in all the three cases, the tracking process started from an individual

initiative. A manager, a system architect, an experienced developer, etc. In other

words, tracking TD requires a champion in the sub-organization, who is aware

of TD and is willing to promote the adoption of the practices.

• Budget – tracking TD needs both an initial effort and a continuous effort.

Company B1 started with 150 hours, in the beginning, for a development unit

(i.e. a sub-organization responsible for a sub-system, which includes a few

teams): however, this was “ok just to start the backlog, but not to go in-depth

investigation”. The continuous time allocated to tracking TD varied across our

cases: it ranged from 10% (company F) to 30% (company A). The cases also

show how the continuous allocation of resources to manage TD could be

dynamic, and varying according to newly identified items, as suggested for

Architectural TD in [135].

• Management involvement – although the initiative can start from anyone in the

organization, tracking TD requires an initial and a continuous investment

(budget). This entails the need of involving a manager who understands the

importance of TD and who can grant a budget for this activity.

• Benefits – as the previous point entails, there is a need, for the management, to

understand the benefits of tracking TD given the initial and continuous budget

allocation. Such benefits need to be communicated and continuously evaluated

in order to justify such investment.

• Measurement set up – according to company B1, an amount of time is needed to

set up measurements (e.g. complexity) and TD identification (static code

analyzers). In other companies, such as F1, we found that a developer set up a

specific analysis tool to measure complexity and bug density: this activity was

supported by a team dedicated to the measurements in the organization.

• Explanation and alignment – the Champion for the TD tracking activity needs

to communicate well to the teams what TD is and what needs to be reported (to

avoid overhead). The interviewees mentioned that they conducted first

workshop for explaining TD and its tracking, and they also produced some

documentation. It is also important to have a validation workshop, where the

teams bring up some TD issues in order to align their understanding with the

main TD concepts such as Principal and Interest.

• Appointing of a Sub-System TD Responsible (SSTR) – TD tracking needs

responsible across the organization who take the initiative to support the tracking

process. In all the studied cases, the responsibility for collecting and maintaining

a list of TD issues were chosen as experienced developers on a given sub-system.

The sub-system TD responsible, however, needs to be supported by the

knowledge of the teams when tracking the issues, as different practitioners have

better and more detailed views of different parts of the system.

www.manaraa.com

242

• Breaking down and distributing TD items – The SSRT needs to allocate the TD

items to the teams according to their competences and their responsibilities with

respect to the system. Architecture items were explicitly appointed to an

experienced developer to be analyzed and estimated.

• Communication of TD to management – Once the first TD backlog is prepared,

it was communicated to a manager, connected to the evaluated (sub-)system.

This was supposed to show the management the risk associated to such system

due to TD.

In summary, quite a few activities are necessary to set up a TD tracking process: this

requires the organizations to take the initial decision of allocating some budget to TD

tracking.

15.3.9. What are the benefits and challenges of tracking TD? (RQ4)

15.3.9.1. Benefits

When we evaluated the tracking process together with the teams, they mention several

benefits of tracking TD. The backlog gave them a long-term perspective, not only the

short-term one given by the feature backlog. The respondents did not think that the TD

backlog was hard to maintain. This is supported by the lower management overhead

reported in the survey with respect to the other practices.

One of the architects in organization F4 mentioned that, after an important architectural

TD item was refactored: “The evidence was visible in the next release with positive

impact when adding new features on top of the one we fixed. Easier to add and no side

effect, cleaner architecture.”. According to the project manager interviewed in company

B1, the initiative was overall successful, but it needed to be continuously supported, to be

really effective: “Yes it was worth it but it is important to follow it up now and to make

sure that parts of the list are done [refactored].”

Another benefit reported by the architect in company B1, the initiative and the weekly

meeting promoted a discussion with teams working on other systems, for example when

an issue on the interfaces was revealed. The same architect reported that the TD backlog

was a great way to receive feedback from the developers, as it made clear what, according

to them, was important to refactor.

One of the interviewed SSTR and a developer mentioned that focusing on TD was

important in order to “zoom out” from their daily work and it was an opportunity to check

the system with a broader perspective. Finally, all the architects mentioned that, by using

the tracking process, they learned issues that were not known before.

15.3.9.2. Challenges

Although several benefits were mentioned by the respondents, some issues with the

current approaches were also reported. The most important one was the acceptance, from

the managers, of the need for refactoring. Even with the list updated, the information

www.manaraa.com

243

about the risk and benefits of performing a refactoring was not always clear to the

managers. This meant that, especially for large TD items, it was difficult to receive the

needed budget for TD repayment.

One of the major problems in starting tracking TD was that the first step needed a

substantial amount of effort in order to collect all the existing items. Although this effort

would be one-time only, in some teams the managers would not concede the necessary

budget. A challenge mentioned by all the participants was that the refactoring became

more difficult to be prioritized and completely repaid when several items and several

teams were involved. It required “double” the effort to prioritize the item with different

managers (who could disagree on the necessity of refactoring) and the coordination of the

refactoring was considering quite risky and as a dangerous overhead. For example, TD

issues involving interfaces were more time consuming to estimate and prioritize, as they

required more discussions involving more stakeholders from more teams.

Another challenge in the prioritization activity was the difficulty to prioritize among TD

items, especially where an explicit risk/impact value was not calculated. The participants

reported that it was generally difficult to show an actual gain from the cost/benefit

analysis to the managers, even with a field explicitly represented in the backlog. In

general, the intuitive values used for the risk/interest (but usually not including a

systematic calculation) were working only sometimes, and more explanations and

indicators were required by the managers to accept a costly refactoring.

The respondents mentioned the difficulty to coordinate the different teams in using a

standardized process for tracking TD. In some cases, it was difficult to “make them care”

about reporting TD, while for other teams the TD list was created with enthusiasm.

Finally, the participants mentioned that in some cases the TD backlog itself did not make

the TD more convincing for the management to be refactored, but it served for the teams

to remember to take care of TD, which would otherwise remain invisible and overlooked.

15.3.10. Strategic Adoption Strategy

As a final result from the combination of the various analyses performed so far, we

aggregated the results, and we combined them together with the roadmap related to the

current literature on TD. This led to the Strategic Adoption Model for Tracking Technical

Debt (SAMTTD, Fig. 6). The first four steps in the model represent the results from the

survey on the current state of practice in the companies.

In particular, we used the results from Q4 to create the first step: if the respondents were

not familiar with the TD concept, they could be on a higher level. Then, we defined three

more levels of TD tracking maturity. To discern between the different levels, we mapped

practices that we found used or not and that correlated with different levels of tracking

(e.g. the usage of a tool). We additionally used the results from the interviews, where it

was clear what different practices were introduced to track TD.

• Unaware: there is no awareness of what Technical Debt is and therefore how to

manage it. According to our survey data, only 8.4 % of the participants are in

www.manaraa.com

244

this stage. This datum is related to the respondents that answered “Not familiar

at all” with the term Technical Debt, as visible in Fig. 5.

• No tracking: in this stage, the software engineers are aware of the TD metaphor

and there is a general understanding of the negative effects brought by having

TD in the system, but there is no initiative to track TD, which remains invisible.

Around 65.6% of the respondents report to be on this level, by (strongly)

disagreeing about tracking TD. The % was calculated by counting the total

answers minus the answers from Q4, counted previously as the unaware

respondents, and the ones who use tools, counted in the next levels (26%).

Therefore, this yielded 100-8.4-26 = 65.6.

• Ad-hoc: In this stage, the software engineers are aware of what TD is and some

of the individuals have started tracking TD on their own. This makes the TD

management process ad-hoc, since, without a dedicated budget, such individuals

use what is available, in terms of tools and processes, for other activities. For

example, according to the qualitative answers related to Q3, the sprint or product

backlog, a common issue tracker or a simple excel spreadsheet can be used for

the purpose of tracking TD. Static analysis tools might be in use, but are limited

to the individual usage. According to the survey, approximately 26% of the

respondents are at least on this stage (61 participants, 26%, were using tools, see

section 8.3.6). However, from these ones, we need to take away around 7 % that

we place on the next level (see point). In total, we therefore report around 19%

of respondents on this level.

• Manual tracking: the company in this level has acknowledged the importance of

tracking TD also on a management level (see Preparation section). Therefore,

there is a budget generically associated with the management of TD. This

amount usually ranges between 10% and 30%. According to the document

analysis of the TD items from the case-study, a specific backlog and

documentation related to TD is necessary, with TD-specific values useful to

analyze the principal and the risk/interest. The TD is understood by the

participants, who have been instructed by a responsible for the process (see

Preparation). There is an iterative process in place to monitor TD (identify,

estimate, prioritize and repay it), and such process is subjected to continuous

improvement. 7.2 % of the respondents are on this stage, actively tracking TD.

This is the maximum level achieved by the companies, as confirmed by the

interviewees. This amount can be obtained when taking in consideration the

respondents who answered “Agree” or “Strongly Agree” to Q5 (see Fig. 9).

We do not have evidence that companies have better processes and tools in place.

However, based on current literature on TD [15] and on related work on change

management [223], we hypothesize future maturity steps that can be reached by the

companies when the results of research would be put in place. We identify the following

three steps:

• Measured: in this stage, identification tools for TD are in place, for example the

use of the tool SonarQube for source code TD (such as McCabe complexity) or,

www.manaraa.com

245

for example, dependency checkers on the architecture level (as reported in

company F1). The measurement of the interest is also in place, e.g. there are

indicators that show the amount of interest paid or predicted if the refactoring is

not conducted. Such tools are not employed in practice yet, and should be

integrated in order to provide overall indicators to be provide help to the

stakeholders to estimate and prioritize TD. The authors of this paper are actively

working on introducing such tools and indicators, as explained in our recent

work [54].

• Institutionalized: according to change management [223], a process is mature

when is spread and standardized across the whole organization. This would

allow an aligned prioritization of TD across the system. This would also allow

the practitioners to plan the allocation of resources according to the quality of

the (sub-)systems in order to plan for the lifecycle of the product. As an example,

the reader can consider a team who needs to build a feature on a sub-system

developed by other teams: knowing how much TD is present in such sub-system,

would allow the team to estimate if a refactoring is needed or the lead time for

the features to reach the customer.

• Fully automated: In this stage, the decisions on the refactoring are completely

data-driven, making use of statistics collected on historical data or by

benchmarking the system against a collection of reference systems. For this

purpose, however, the previous steps are necessary.

Figure 15. The Strategic Adoption Model for tracking Technical Debt: the main

milestones and the state of practice (% of respondents per category)

15.4. Discussion

The combination of data from 226 participants in 15 large software organizations with

the in-depth case-study, provided an overall picture of the current state of practice with

respect to TD tracking. In this section, we discuss the contributions in this manuscript,

www.manaraa.com

246

with respect to practitioners and researchers, we compare our results with existing

literature, and we report limitations and threats to validity related to our study.

15.4.1. Current state of practice of tracking TD and implications for

practitioners and researchers

The results related to RQ1 tell us that software companies spend, on average, around 25%

of their development time on TD management activities. The boxplots (Fig. 4 and Fig.

10) show some consistency in the companies: the medians range between 15 and 25% of

effort. The 50-percentile also shows some consistency in the answers, but there we can

find some variance as well: different organizations and individuals dedicate divergent

amounts of time to TD management. We could find some differences in the approaches

used by the participants, which seems promising: for example, the usage of backlog and

code static analyzers appear to be related to less management overhead. However,

considering the quantitative analysis, we cannot infer that any background variable

related to the respondents would have a significant impact on the overall management

overhead.

The results related to RQ2, RQ3 and RQ4 tell us that only a few employees do not know

what TD is (around 8%). However, despite the familiarity with TD, more than half of the

participants still do not track TD (approximately 65%) and almost one out of five do it in

an ad-hoc way (19%), i.e. by using tools that are not made for TD tracking and therefore

are not effective. Finally, only 7% of the participants tracks TD in a more dedicated way.

An interesting observation is that the results are not significantly affected by the

background and the role of the respondents. This datum increases the reliability of the

results: independently of the organization and the background of the participants, we

found very similar results across the respondents, which can be considered also more

general. In other words, the means and the variance across different practitioners are

similar in different organizations.

However, this also lead us to consider the following: different roles with different

priorities and views (e.g. managers and developers) agreed on the estimated amount of

effort done to keep TD at bay, as well as on the fact that such effort is not systematic (TD

is mostly not tracked). Then, a unanswered question is: if TD is so painful, why do

organizations not track TD in a more systematic way? One possible answer is that

employees do not know how to track TD in an effective manner. This is supported by the

fact that, most of the ones who track TD, do not use proper tools or documentation, while

the few ones who systematically track TD are still doing it manually and with the rare

usage of basic measurements. For this reason, we found important to propose the

SAMTTD model, to help practitioners understanding what it means to track TD and what

is necessary to implement a tracking process in practice.

Another answer to the current lack of TD tracking, despite the management effort, might

be found in the results related to RQ8 and RQ9 concerning the necessity of a Preparation

phase and its cost, which is critical for the introduction of a TD tracking process in the

companies. The initial initiative needs to be conducted by one or more champions in the

organization. An initial budget should be allocated, in order to allow the first activities

www.manaraa.com

247

related to the TD inventory, and this entails that there is a need for the commitment of

management, which is achieved by communicating how a systematic TD management

process would bring benefits to the organization. Unfortunately, this is one of the

challenges reported by the practitioners, who claim that there is a lack of good instruments

and publicly available results to advocate for the need of a systematic TD management.

Other activities include the communication and alignment of what should be collected as

TD, the set-up of measurement systems, the appointment of a Sub-System TD

Responsible (SSTR) and the breakdown and distribution of the TD items to the teams.

Unfortunately, the first investment can be burdensome, as a trial of 150 initial hours for

a unit with three teams was barely enough to firstly identify the initial TD list, and did

not leave time for the company to set up measurement systems and to accurately estimate

and prioritize the TD items, although updating the TD backlog becomes lightweight in

the following iterations.

For what concerns tools to track TD, we found that many participants use backlogs,

implemented in project management tools such as Jira and Hansoft, and static analyzers.

The results also suggest that these approaches require less management effort and they

seem to give slightly more awareness about the TD in the system. However, it seems that,

for most of the respondents, the awareness of the amount of TD present in the system is

not affected by the tool in use, if not slightly. This means that TD tools are not only used

by the teams to be aware of the TD, but rather for communication, monitoring and

management purposes. The usefulness of these tools is shown by the fact that the

participants using backlogs and static analyzers, spent less than the average (18-19% of

the time compared to 25.9%) on TD management. However, the tools do not seem to help

raising the awareness of the respondents, as the mean awareness remains between

“somewhat disagree” and “somewhat agree”. Many qualitative answers, both from the

survey and from the case-study, also report the fact that many TD items cannot be

automatically revealed, as they are too context-specific and they cannot be represented

by generic patterns. This leads to the conclusion that better and more specific tools for

managing TD need to be developed.

In summary, managing TD requires a few investments that are not well known by the

practitioners and are difficult to be motivated by a precise cost/benefits ratio.

Consequently, without an investment on processes and tools to track TD, it is difficult to

make TD visible, as well as to advocate for refactoring “invisible” TD. This represents a

vicious cycle: companies suffer the negative effects of TD and try to contain it, but at the

same time they do not find enough motivations to invest in a more systematic

management process. By looking at the motivations for start tracking TD, the results show

that organizations do so when they experience the interest of TD: slow feature

development, quality issues and performance degradation. However, at such point, the

interest associated with TD is already high and, as explained in other recent papers [110],

[23] from the authors of this manuscript, it is hard to refactor, as the cost has also

increased and has become too expensive. In conclusion, the only way out the vicious

cycle seems to be, for the practitioners, to proactively start tracking TD. Using backlogs

and static analyzers help reducing the management overhead and increasing (even if

slightly) the awareness of TD. New tools need to be developed, in two main directions:

allowing the developers to communicate the urgency of refactoring TD to the

www.manaraa.com

248

management, and better (semi-)automatic tools to identify and track TD to increase the

awareness of the respondents.

15.4.2. Related Work

There are two survey-based studies regarding the familiarity and tool usage related to TD.

In [21] the authors concluded that 50% of respondents said that no tools were used, and

only 16% stated that tools gave enough details. Their study also shows that 27% of the

respondents do not identify TD. Furthermore, Holvitie et al. [22] show that over 20% of

the respondents (in Finland) indicated poor or no TD knowledge. However, in these

studies we cannot find a quantification of the estimated effort spent on TD management

and there is no explanation about how a TD tracking process can be started or

implemented. As a comparison with these studies, the results from our survey show that

the familiarity of TD and its tracking seems to be higher among the respondents that

answered our survey. Maybe this is related to the different size, culture or domain of the

organizations, but given that our study is more recent, we could speculate that the

familiarity of TD is growing. In our results, only 8.4% of our respondents was not familiar

with TD, and 27% of the respondents used tools. Both findings are higher than in the

other surveys.

There are a few articles about industrial practices concerning Technical Debt, for example

[219], [149], [224] but they are single case-studies and, in two cases, they were performed

in small companies. Also, such work does not focus on the current state of practice o

technical debt tracking, a quantification of TD management effort, the motivations for

starting tracking TD or the maturity evolution of tracking: this makes it difficult to

compare the results with our survey, but we will take the topics one by one and discuss

similarities and differences. As for the cost of tracking TD, [52] reports detailed results

from a single case-study. Some results are in line with the broad results reported here: the

effort might vary greatly, reaching even 70% of the development time, and starting the

TD tracking is more expensive in the beginning but it becomes more lightweight when

the process is repeated. In [225], several companies have been analyzed on their TD

management process, which reports similar results to our cases, e.g. the limited use of

measurements and lack of a systematic process. However, the study does not focus on TD

tracking, it reports a broad snapshot of current practices and does not take change

management perspective into account, in contrast with our work. For example, we report

here information such as the quantified cost of managing TD, the reasons why

organizations start tracking TD and the preparation activities and costs necessary to track

TD. We present a maturity model, SAMTTD, that, taking into account change

management aspects, allows for the transfer of knowledge to practice. This is visible by

the additional four levels added in our model. We can consider the 4th step, in our model,

as an especially important addition in our work, as we found evidence of a systematic

process using TD-specific documentation, not reported in [225]. In addition, none of these

studies report quantitative answers from as many as 226 practitioners, which also show

trends and statistical results reported here.

There are a few studies regarding Technical Debt tracking and tools in literature. As for

tools, most of the recent findings report tools created by researchers (e.g. [116], [226],

www.manaraa.com

249

[227]): the experience reports are usually related to the evaluation of the tool in a specific

context, and therefore cannot be considered as state of practice (at least, not yet). This is

understandable, as new tools are being developed while this manuscript is being written,

and given that the attention on the TD topic, from software organizations, is quite recent.

As for tracking, three initiatives have been reported in literature [226], [228], [229]: the

first one[226], presents a tool called DebtFlag, which allows tracking TD and its

propagation. However, the evaluation in practice of such tool has not been reported yet.

The second one [228], reports the evaluation of a tool (AnaConDebt) to assess and track

TD. A first study has been done in an industrial environment, but more studies are needed

to understand if the tool is usable in practice. Finally, the last paper [229] reports a new

method to analyze the TD reported in code comments. Although some of the features of

the semi-automatic approach seem interesting, it is not clear how many TD items are

covered by comments, and if this approach can actually be used in practice (the paper

does not report a practical use of the method with an evaluation from the practitioners).

For example, if we look at the survey conducted in this paper, currently only around 1%

of the participants (three) state that they track TD using comments.

15.4.3. Limitations and Threats to Validity

Here we report the main threats to validity regarding this study, according to [73]:

construct validity, internal validity, external validity and reliability.

Construct validity is concerned with the investigation device and the validity of the data

with respect to the RQs that are investigated. In a survey, this is usually one of the main

threats to the validity of the results, as participants might interpret definitions and other

terms differently from each other. Although this phenomenon is unavoidable, we took a

few approaches to mitigate the consequences. As for the misunderstandings related to the

interpretation of what TD is, we have reported, before the questions, short definitions of

the issues and management activities that are associated with TD according to the most

up-to-date literature. In other words, we did not ask questions on “Technical Debt”

directly, but on more concrete issues that are associated with it. In our experience, this

should have reduced the possibility that the respondents would consider TD as something

else, for example bugs or missing features (something that might happen in practice,

according to our experience). We have also provided, in the last part of the survey, a

definition operationalized from the various existing, formal definitions. We have asked a

question about if the practitioners were familiar with TD according to the definition, and

mostly they agreed. Although this does not ensure that the practitioners had answered

with a full knowledge of what Technical Debt is, we believe that the two mitigation

strategies together had contributed to reduce the threats to construct validity.

There is a threat of internal validity when mapping the respondents to the levels in the

SAMTTD, as we did not ask this question directly to the participant. To mitigate this

threat, we used multiple evidences from various quantitative and qualitative answers, and

we can reliably say that no company is using integrated measurements of TD, which place

the respondents necessarily from level 1 to 4. We have thoroughly assessed the number

of respondents for level 3 regarding the usage of a tracking tool. By definition, the

respondents in level 1 do not know what TD is, and this datum comes directly from the

www.manaraa.com

250

answers related to their familiarity with TD. Level 4 include the few practitioners who

have confidently reported how they track TD. These practitioners have also been

interviewed, which yielded a description of what systematic process they were used.

Consequently, level 2 contains the remaining of the respondents not included in level 1,3

and 4.

As for the results concerning testing hypotheses statistically, it is important to notice that,

in most cases, we could not reject the null hypotheses that the results would depend to the

background of the respondents (roles, company, etc.). This means that we could not find

enough evidence, in this dataset, to support the rejection of the null hypotheses, but the

reader should be warned that we also did not prove the opposite hypotheses.

Finally, it is important to report the threats to external validity: we investigated mostly

large, embedded system companies and from the Scandinavian area. This entails three

possible threats:

• It is possible that, in other domains (e.g. web development), the % of the

companies in the maturity steps would differ. To mitigate this threat, we have

included a company developing “pure” optimization software. In this case, we

did not find a statistical difference with respect to the other companies. However,

more research is needed to understand if there is a difference.

• Companies in other countries, with different contexts and cultural background,

might answer the survey in a different way or have different ways of managing

Technical Debt.

• Small companies might behave very differently with respect to Technical Debt

management.

Therefore, the reader must be aware that there are some limitations to the extent to which

we can generalize from these results.

There are also threats to the reliability of the results, or else, the results might be biased

depending on a particular interpretation given by the authors, method, or particular source

of evidence (e.g., if we asked only developers but not managers), as reported below:

• There is a threat in the quantities estimated by the respondents with respect to

Q1. We do not know what the given estimations are based on, since most of the

participants do not track TD and the time spent on it. However, as the

demographic data show, many participants can count several years (more than

10) of software development experience. This means that they are used to

estimate the amount of work that has been done or that is upcoming, which

mitigates the threat that the estimated effort would be very distant from the real

one.

• As for the authors’ interpretation, we have made sure that, especially for the

qualitative data analysis, we have applied observer triangulation: two or more

authors have analyzed the interviews and either separately coded the statements,

or checked the other authors’ codes. Although this does not remove the threat

completely, it is the main strategy used when qualitative data analysis is involved

in the study.

www.manaraa.com

251

• Relying only on quantitative data might miss important details that are necessary

to understand the results or might show correlations that are not related to any

real causality. For example, we could not find reasons, from the quantitative

background data, that would explain the variance in the amount of time that the

participants are employing to manage TD. However, we could combine the

quantitative results to qualitative answers coming from some of the

organizations participating in the survey, which helped explaining the factors

related to their maturity by analyzing the interviews.

• Finally, there is a threat of reliability of the results, as the percentage of

developers participating in the survey was larger than other roles. This mean that

the results might be skewed by the developers’ biases. However, to mitigate this

threat, we performed a chi-square test to understand if the distribution of the

answers would depend on the roles of the respondents. The test did not support

such hypothesis, meaning that there was not a statistically significant difference

between different responding roles (different roles gave similar answers). By

having such roles participating in the survey, we could apply a mitigation

strategy denoted as source triangulation.

15.5. Conclusion

According to 226 respondents in 15 software organizations, practitioners estimate to

spend, on average, a substantial amount of time trying to manage TD (25%), although

such amount is affected by some variance. Software companies in Scandinavia are more

familiar with the TD metaphor with respect to previous studies, and they track TD more.

The awareness of TD in the system seems to be somewhat known by the developers,

independently from which approach is used. Tools such as backlogs (the most popular

approach) and static analyzers help reducing the management overhead of approximately

7%. However, only 26% of the respondents use tools to track TD, and only 7.2% of them

created a systematic process in their organization. This is due to the lack of knowledge of

what is necessary to implement to introduce a TD tracking approach in the organization,

in terms of tools and processes, as well as a lack of awareness of what the negative effects

of TD are before they occur. Moreover, we studied some approaches and found that an

initial investment on preparing for the introduction of TD is necessary, which makes

starting TD tracking less appealing for managers who need to fund the activities.

However, although there are some obstacles to overcome, some of the companies are

proactively and strategically implementing a solution to make TD visible, which shows

that it is practical to introduce such approaches. To help this process for other

practitioners, we propose a Strategic Adoption Model (SAMTTD), based both on the

evidence collected across this study in combination with current literature. The Model

can be used by practitioners to assess their Technical Debt tracking process and to plan

the next steps to improve their organization.

www.manaraa.com

252

www.manaraa.com

253

16. Technical Debt, from a Startup Company

Perspective

In this chapter, we seek to understand the organizational factors that lead to and the

benefits and challenges associated with the intentional accumulation of technical debt in

software startups.

Software startups are typically under extreme pressure to get to market quickly with

limited resources. This pressure is likely to cause startups to accumulate technical debt as

they make decisions that are more focused on the short-term than the long-term health of

the codebase. However, most research on technical debt has been focused on more mature

software teams, who may have less pressure and, therefore, reason about technical debt

very differently than software startups. In this study, we interviewed 16 professionals

involved in seven different software startups. We find that the startup phase, the

experience of the developers, software knowledge of the founders, and level of employee

growth are some of the organizational factors that influence the intentional accumulation

of technical debt. In addition, we find the software startups are typically driven to achieve

a “good enough level,” and this guides the amount of technical debt that they intentionally

accumulate to balance the benefits of speed to market and reduced resources with the

challenges of later addressing technical debt.

16.1. Introduction

Software startups are freshly created companies with no operating history and mainly

oriented towards developing high-tech and innovative products, aiming to grow their

business in highly scalable markets [60], [6]. Compared to more mature companies who

are often maintaining software to an established market, software startups face different

types of challenges. Startups often operate with limited resources and under extreme time

pressure as they strive to produce their product and avoid being beaten to market by a

competitor or running out of capital [3]. Thus, startups typically develop early software

versions to test and validate emerging ideas to avoid wasteful implementation of

complicated software which may be unsuccessful in the markets [230]. Under these

conditions, often the extra effort required to design and implement software with an

optimal design is considered an unaffordable luxury and a potential waste of time and

effort.

Software companies often make sub-optimal design decisions to allow them to get to

market quickly [3]. For instance, the product might be built with an inflexible architecture

that cannot be easily changed to speed up time-to-market and let the startup put their

This chapter has been published as:

Embracing Technical Debt, from a Startup Company Perspective

T. Besker, A. Martini, R. E. Lokuge, K. Blincoe, and J. Bosch

IEEE International Conference on Software Maintenance and Evolution (ICSME),

pp. 415-425, 23-29 Sept. 2018.

www.manaraa.com

254

product in users’ hands earlier, get feedback, and evolve it [111]. If and when the

developed software becomes successful on the market, then the pressure turns modifying

the software to meet the user needs (i.e., adding new features). This can cause startups to

build upon the original inflexible architecture that was not designed to last for the long

term and is not easily extendable.

The result of this situation is the accrual of what is described as Technical Debt (TD).

The TD metaphor was first coined at OOPSLA ‘92 by Ward Cunningham [8], to describe

the need to recognize the potential long-term negative effects of immature code that is

made during the software development lifecycle. A recent, definition was provided by

Avgeriou et al. [4] who define TD as “In software-intensive systems, technical debt is a

collection of design or implementation constructs that are expedient in the short term, but

set up a technical context that can make future changes more costly or impossible.

Technical debt presents an actual or contingent liability whose impact is limited to

internal system qualities, primarily maintainability and evolvability”.

TD has been the focus of much recent research, but this research has been mostly focused

on mature software companies, where large amount of TD is considered to be detrimental

to the long-term success of software development [7]. However, deliberately

accumulating TD could be much more beneficial since it can considerably speed up time-

to-market, allowing them to release their product to end-users faster, get feedback, evolve

the software, and preserve capital [231]. However, TD must be managed to ensure it is

addressed at an appropriate time; unmanaged TD can have negative consequences, such

as the death of the startup itself [232].

There is a current paucity of empirical research focusing specifically on TD and startups

[233]. This paper reports on a qualitative study that examines the organizational factors

that influence the introduction of TD and the benefits and challenges of deliberate taking

on TD. Through interviews with 16 professionals at seven different startups, we identified

six organization factors that lead to TD. In addition, we present a list of benefits and

challenges of TD in startups, which can be considered by practitioners to aid them in the

TD decisions.

The remainder of this paper is structured as follows: In Section II we describe the

background and related work. Our research methods are described in Section III. We

describe the cases in Section IV. The results are presented in Section V. Finally, we

discuss the implications and limitations of our work in Section VI, and offer a brief

conclusion in Section VII.

16.2. Background and related work

In this section, we provide a complete description of a software startup, provide some

background on the startup lifecycle, and review related work on TD in startups.

www.manaraa.com

255

16.2.1. Software Startups: A Definition

Giardino et al. [6] define software startups as those “organizations focused on the creation

of high-tech and innovative products, with little or no operating history, aiming to

aggressively grow their business in highly scalable markets”. Sutton [234] presents

different characteristics that reflect both engineering and business concerns, which

software startup companies must operate within. Software startups are relatively young

and inexperienced compared to more established and mature development organizations,

and they commonly have very little accumulated experience or history. Typically, their

resources are limited, and they primarily focus on getting the product out, promoting the

product, and building up strategic alliances. Their business is dependent on influences

from various sources, such as investors, customers, partners, and competitors. The

software these startup companies are developing are commonly technologically

innovative products, and their developing often involves cutting-edge development tools

and techniques [234].

16.2.2. Software Startups Life Cycle

Crowne [235] identified four distinct stages for a software startup: startup, stabilization,

growth, and maturity. Each stage has different types of critical product development

issues that potentially can lead to company failure. The first “Startup” phase refers to the

period between product idea and the first sale. This stage is characterized by a product

where the product doesn’t meet the customer’s requirements and is unreliable and fails

frequently. Rectifying defects takes longer than expected and often creates additional

defects [235]. The second “stabilization” phase begins when the first customer takes

delivery of the product and ends when the product is stable enough to be commissioned

without any overhead on product development. During this stage, a divide between

developers can be spotted, where the developers who join the company early, and those

who are recruited later differ in terms of that the early developers mount significant

resistance to organizational change. During this stage, the non-functional requirements

such as security, reliability, scalability, and performance gain additional attention, and the

result of the previously introduced sub-optimal solutions becomes evident [235]. The

third “growth” phase takes place when the product can be commissioned for new

customers without creating any overhead on the development team. This phase ends when

market size, share, and growth rate have been established, and all business processes

necessary to support product development and sales are in place. In this stage, new

features implementation requires a coordinated program of activities across functional

areas including product development, professional services, support, and sales and

marketing, which stresses the importance of having a repeatable process for software

development implementation. The last “maturity” stage occurs when the company has

evolved from a startup into a mature organization, where, e.g., market size, share, and

growth rate have been established In this stage also all processes necessary to support

product development and sales are in place [235].

www.manaraa.com

256

16.2.3. Startups and Technical debt

There is a lack of research studies on TD management in software startups [233]. Giardino

et al. [6], conducted an empirical study addressing how startups employ software

development strategies, using a Greenfield Startup Model (GSM), which also covers

startups and TD to some extent. Giardino et al. describe that to be faster, startups may

introduce TD as an investment, whose repayment may never come due, with the long-

term negative effects on morale, productivity, and product quality. Further, in their study

they state that “Startups achieve high development speed by radically ignoring aspects

related to documentation, structures, and processes”, and that “instead of traditional

requirement engineering activities, startups make use of informal specification of

functionalities through ticket-based tools to manage low-precision lists of features to

implement, written in the form of self-explanatory user stories”.

Gralha et al. [236] investigated the evolution of requirements practices of software

startups. They found that TD is one of the six factors that influence the requirements

practices of a startup. They identified three phases regarding the accumulation of TD in

startups. They also identified trigger points that cause startups to transition from one

phase to the next. An increase in the number of employees and software features causes

startups to transition from simply knowing and accepting TD to tracking and recording

it. Then, when their client retention rate goes down, or they begin to see an increase in

negative feedback, they begin to manage and control TD.

Another study which to some extent covers TD in startups is presented by Yli-Huumo et

al. [237]. In that study, they investigate the relationship between business model

experimentation and TD, with the goal of understanding if conducting these types of

experimentations have any effect on the amount of TD occurring during the software life

cycle. The concept of a business model experimentation in their study refers to when a

company uses the technique to validate assumptions made on a product from real

customers before the actual product is created. An example of this can be illustrated when

a Minimum Viable Product (MVP) is used to test the business model by collecting and

measuring customer feedback [237]. Since adopting the technique of business model

experimentation is a conventional approach in both startups and larger companies [237],

this study is somewhat related to ours. The result of their research showed that there is a

relationship between business model experimentation and the occurrence of TD and also

that focusing too much on business model experimentation and not on remediation of TD

can have consequences to the product quality.

In a research agenda for software startups provided by Unterkalmsteiner et al. [233], the

authors state that researchers must build a more comprehensive, empirical knowledge

base to support forthcoming software startups. They list several research question related

to TD, and by answering these questions, they state that it could help clarify the role of

design decisions in software development in the context of a software product roadmap,

similarly to what happens in other engineering disciplines. The overall goal of the

research questions listed by Unterkalmsteiner et al. [233] address in what way

practitioners will be able to make better decisions considering the characteristics of the

current software product implementation.

www.manaraa.com

257

16.3. Research Methodology

The goal of this study is to understand how software startups reason about TD. In

particular, we are interested in the organizational factors that impact TD together with the

potential benefits and challenges of TD. We, therefore, aim at answering the following

research questions:

RQ1: What organizational factors influence the accumulation of TD in software startups?

RQ2: What are the challenges and benefits of Technical Debt for software startups?

In order to answer these research questions, we investigated the strategy of software

development in different software startup companies by interviewing 16 practitioners in

seven different startup companies, working in seven different areas.

16.3.1. Participants

We collected data from software professionals active in seven different software startup

companies, shown in TABLE I. The sample population was selected using a non-

probability sampling technique [86], where the selection of participant companies was

obtained using convenience sampling. The startup companies were located in two

different countries. The companies are described in more detail in Section IV.

TABLE I - STUDY PARTICIPANTS

Role Company Country Segment

Developer
A Country 1 Sport

Developer

Developer
B Country 1 Energy

Developer

Developer

C Country 2 Retail

CEO / Developer

Co-founder / Developer

Co-founder / Developer

Co-founder / Developer

CEO

D Country 2 Medical
CFO

COO

Senior architect

Advisor (Business and

Technology)
E Country 1 Media

www.manaraa.com

258

Role Company Country Segment

Advisor (Business and

Technology)
F Country 1 Software

Development

Chairman of the board G Country 1 Mental Health

16.3.2. Data Collection

Initially, we ran two workshops (one in each country) with participants from four different

startups (A, B, C, and D). The workshops included both a presentation made by one of

the authors about TD, followed by a group discussion where the participants explored

their own experiences with TD within their startup companies. Each workshop lasted

about 120 minutes and in total 12 practitioners from the investigated startup companies

participated.

The goal of these workshops was to introduce the participants to the study, to align and

equip them with relevant knowledge about the concept of TD and to gather background

and contextual information on each participating startup company in preparation for the

following interviews.

We conducted semi-structured (as suggested in [73]), face-to-face interviews with 16

professionals from seven different companies, from two different countries. To improve

the reliability of collected data at least two of the authors participated in each interview

session. Each interview lasted between 60 and 120 minutes and was digitally recorded

and transcribed verbatim. The questions were prepared by three of the authors together.

The aim of the interviews was to understand the accumulation and refactoring of TD and

what contextual aspects (related to the startup's environment) influenced such

accumulation. We started by asking participants to describe their startup company and

product. We asked follow-ups to learn about the contextual aspects of the startups,

focusing on the contextual characteristics described in [60]. In the remainder of the

interview, our questions focused on TD. Specifically, we asked:

• Describe some critical TD issues.

• Which TD issues were refactored (and when)?

• Which TD issues are planned to be refactored (and when)?

• If TD issues are not planned to be refactored, why not?

• What value did the accumulated TD give the company?

• What cost was (or will be) paid to remove the TD?

• What extra costs were (or will be) paid because of the TD?

• What led to the accumulation of TD?

• What roles, processes, guidelines, and strategies were used for TD?

www.manaraa.com

259

Finally, to get more insight into the existing TD, we also jointly ran the software

SonarQube [238], and AnaConDebt [239] during the interviews. None of the companies

previously used these tools, and they were not familiar with the output from the tools in

advance. We asked questions on:

• What issues were revealed and were they already known?

• Would it have helped to use the tool (and when)?

• Will you use the tool in the next iterations?

16.3.3. Data analysis

We used thematic analysis [84] to identify, analyze, and report patterns and themes within

the interview data. Thematic analysis involves searching across a dataset to find repeated

patterns of meaning. The thematic analysis provides a flexible and useful research tool,

which offers a detailed, and yet complex account of the collected data.

The thematic analysis was conducted using a six-phase guide. First, the audio-recorded

qualitative data collected from interviews were transcribed, and we familiarized ourselves

with the data through careful reading of the transcripts. The second step involved the

production of initial codes from the data, where we organized the data into meaningful

groups. In this phase of the analysis, a Qualitative Data Analysis (QDA) software package

called Atlas.ti was used. The third phase focused on searching for themes by sorting the

different codes into potential themes and collating all the relevant coded data extracts

within each identified theme. Each extract of data was assigned to at least one theme and,

in many cases, to multiple themes. For example, the citation “if it [the software from a

third-party application] lifts and take off, we can build our own solution” was coded as

“Third party” in the theme “Software development Process.” To ensure that the coding

was performed in a consistent and reliable fashion and in order to triangulate the

interpretation of the data and to avoid bias as much as possible, two authors synchronized

some of the output of the coding, following guidelines provided by Campbell et al. [85].

The fourth phase focused on the revised set of candidate themes, involving the refinement

of those themes. The refinement concentrated on forming coherent patterns within the

themes. When needed, we revised the themes or created a new theme. The fifth phase

focused on identifying the essence of each theme and determining what aspect of the data

is captured by each theme. This phase also stressed the importance of not just

paraphrasing the content of the data extracts, but also identifying what is interesting about

them and why.

The final phase of the thematic analysis took place when we had a set of fully developed

themes, and involved the final analysis and write-up of the publication. We have made a

figure illustrating how the codes and the corresponding themes were assigned during the

thematic analysis available at https://figshare.com/articles/Thematical_Analysis/-

6115172.

https://figshare.com/articles/Thematical_Analysis/-6115172
https://figshare.com/articles/Thematical_Analysis/-6115172

www.manaraa.com

260

16.4. Description of cases

In this Section, to provide more context for our study, we describe the companies in more

detail. We also indicate the startup stage for each company (using the stages in Crown’s

[235] classification of startups, which we described in Section II.B). Across the seven

cases, all stages are represented by at least one of the cases in this study.

In this Section, to provide more context for our study, we describe the companies in more

detail. TABLE II. summarizes the seven companies that participated in this study. As can

be seen, there is diversity across all aspects. We also indicate the startup stage for each

company (using the stages in Crown’s classification of startups, which we described in

Section II.B). Across the seven cases, all stages are represented by at least one of the cases

in this study. Figure 1 shows how TD was accumulated or addressed in each stage. All

companies reported accumulating significant TD in the startup phase. Surprisingly, two

companies reported undertaking either a major refactoring or a complete redesign during

the startup phase prior to securing their first customer. Both of these cases were due to

unintentional issues with the code or the design. During the stabilization phase, most

companies reported addressing the TD that accumulated in the previous stage either by

taking on formal refactoring initiatives or by informally removing TD as needed. The two

companies in the growth and maturity stages indicated that most of the TD had been

addressed before entering these stages. Only two of the companies, C and F, had not yet

performed a large refactoring or redesign, but both planned this for the future.

TABLE II - DESCRIPTION OF CASES

www.manaraa.com

261

Figure 1. Overview of TD strategies across Crowne’s [11] stages for each Startup

16.5. Results

The following subsections present results for the research questions presented in Section

III, and the results are grouped according to each research question.

16.5.1. What organizational factors influence the

accumulation of TD in software startups? (RQ1)

Our analysis has identified many factors that influenced the amount of TD that the

startups accumulated.

16.5.1.1. Experience of software developers

Our results indicate that the experience level of the software developers can have both

positive and negative influence on the accumulation of TD. As startups are initially very

small in terms of number of developers, the experience level can be much more impactful

on startups than on more mature software teams.

Less experienced (junior) developers often unintentionally accumulate TD due to their

lack of experience. As one interviewee from Company A stated, “It's really good to have

at least one guy that is more experience in the team.” Another interviewee from Company

E explained this as: “Junior developer are less able to project outcome to the future about

how the system is likely to evolve, which means that they have a tendency to focus on the

‘here and now’, and solve the today's requirement whereas people that are experienced

can often predict a little bit more easily what is likely to come in the future and already

www.manaraa.com

262

start to prepare the system for that…Finding the right balance between focusing on now

and prepare for the future is a very different balancing act for startups then it is for large

scale companies.” Thus, junior developers are more likely to introduce unintentional TD

due to their lack of experience.

More experienced (senior) software developers are more aware of and have accumulated

more experience about the effect of introducing TD, compared to junior developers. Thus,

having senior developers to guide the development is very beneficial. However, senior

developers are more expensive, and startups typically cannot afford to have many senior

developers. “I think that it would be very expensive to get another very experienced

person. And maybe it's not worth it.”

In addition to high salary costs, senior developers may be less likely to intentionally

accumulate TD if they have experience working on more mature software products that

are not under such extreme time pressures to get to market. A participant from Company

D stated, “If we had had the knowledge or the insight, we probably would have taken on

board technical debt earlier on, but I think because we ended up hiring senior developers

that were used to, working in certain ways with testing and re-testing everything. They

ended up building, a fairly robust, as far as we can tell, but for our purposes, there might

have been something over-engineered perhaps.” Senior developers may be less willing to

operate in an unstructured and less quality oriented approach. For example, one

interviewee from Company A said: “So, you need to be more flexible, and if you are

senior maybe you don't are ready to cope with that.” This could cause startups delays in

getting to market if TD is always avoided in favor of producing high quality software.

16.5.1.2. Software knowledge of startup founders

We found that the knowledge of the founders, related to software development, has an

impact on how TD is accumulated. Founders with limited software development

knowledge are less likely to accumulate TD intentionally. Since they are unable to

implement the product themselves, they are likely to employ an external consultancy

company or hire in-house developers to implement the first software solution, which

involves a significant investment prior to being able to receive revenue from the software.

The founders typically expect a high-quality implementation in return for this investment

since they tend to have no knowledge about the benefits of TD.

On the other hand, when the startup founders are experienced software developers, they

are more likely to implement the product on their own. They often accumulate a large

amount of TD because they focus on producing the first release quickly. They view the

initial release as more expendable since they have not invested money towards its

development.

16.5.1.3. Employee growth

We found that when startup teams were remaining stable in terms of the number of

developers, they did not feel a need to reduce their TD since the issues related to the TD

affected only the developers, not the customers. The participants did not believe their TD

www.manaraa.com

263

impacted product performance or usability. While the TD did make the code more

difficult to extend or modify, the existing developers were already familiar with the TD

in the code, so it was not necessary to reduce the TD.

However, we found that the addition of new developers caused the TD to decrease for

several reasons. First, the existing developers reduce the technical debt prior to hiring

new developers. The developers want the code to be easier to understand so that new

developers can be onboarded more quickly. They also do not want new developers to

unintentionally introduce additional technical debt because they are modeling their own

code on existing TD. For example, an interviewee at company B stated: “But as time goes

on, the quality of real code, or its readability and how easy it is to work with, becomes

more and more important. It is very easy when you as a developer comes into a project

that you start writing code in the way of the existing code base. You kind of go ‘oh, this

is how they do it here,’ and that is not always a positive thing. A lot of time that is quite

a negative thing, because, you slip into those habits and before you know it, all the things

that you personally hold true about what good code is, you are not doing that anymore”.

This fear of that new employees will directly copy the code, and thereby duplicating TD

was also described by one interviewee from Company A stating: “And if you come in as

a new developer, you might copy-paste some code, and you copy-paste that old thing of

doing it, and we get the more messy code. And that is what we don't want.”

In addition to the existing developers purposely reducing TD, new developers also

remove TD as it is difficult to extend. The existing developers may be so familiar with

the code, that they no longer notice the problems, while they will be more obvious to the

new developers. For example, a developer from Company D said “I mean there’s a big

refactor when they brought me on. …[we] ended up throwing a lot of code out and

rewriting it. And that was probably because of the technical debt side of things in there,

using constants throughout and the like.”

16.5.1.4. Uncertainty

In general, uncertainty about the future of the organization and product is very common

characteristic in the startup companies. Our results suggest that, not surprisingly, the

uncertainty plays a major role when making decisions about TD. One of the interviewees

from Company C put this as “with these sorts of projects, you need to build a business

case, and you’d be silly to like build something with no technical debt in it until you’ve

at least proven that it’s something you have to pay for. As soon as we confirm that there

will be [revenue], and see the money starting to come in, that’s when you probably start

to look at the repaying the technical debt”. Another participant from Company D stated

“there was a point where basically we said, okay, now we just need to stop spending

money because we don’t know if this is even going to be a viable project and if it’s going

to generate any money or anybody’s going to want to buy it”.

This uncertainty causes startups to accumulate significant TD so they can release a proof-

of-concept as quickly as possible. Once their idea is validated and they have a number of

paying clients, they can worry about paying off their TD – possibly be rewriting the entire

codebase from scratch.

www.manaraa.com

264

16.5.1.5. Lack of development process

None of the interviewed startup companies adopted a systematic software development

process, and the need of having such a process was not considered by the interviewees to

be important during the first phases in the startups’ life-cycle. However, this topic was

brought up as a challenge, especially when the startup grows and hires more developers.

A lack of processes for the management, identification, and prioritization of TD means

that TD decisions are often made ad hoc, and there are no consistent decisions being made

across the team. This is especially important as the team grows to ensure there is

conformity. As one interviewee in company A said: “Multiple ways of doing things, are

spreading at the same time… I mean, it is quite important for me, when we start to grow,

that we have the same way of writing code.”

16.5.1.6. Autonomy of developers (related to TD)

Related to the lack of development process, developers often have full autonomy to

decide when to take on TD and plan when to refactor the TD. Developers typically do not

discuss TD-related decisions with others. While this allows for flexible work and short

decision paths, it means developers, who are often not financially invested in the project,

are making very important decisions without possibly considering the financial

repercussions of these decisions.

This can be especially problematic when employing external software consultancies since

decisions tend to made based on the benefits to the consultancy company, rather than

making the best decision for the software product under development. The consultancy

could decide to minimize TD because they want to maintain a high-quality reputation for

their company and do not want to deliver software that is not maintainable. If the

development is not on a fixed price contract, this desire for perfection could cost the

startup significant time and money. On the other hand, they may be driven to take on

significant TD since they know they do not need to maintain the software and they are

driven by the desire to save money during the development. For example, the interviewee

from Company G stated: “the externally hired consultants, they just did what was asked

of them in their contract, with the lowest possible development effort. That is commonly

how it works with externally hired developers, they do not really care about Technical

Debt, they care about delivering the software according to the given specification they

are paid for.”

We saw only one case where developers were not given full autonomy regarding TD

decisions. The founders of this company found being involved in even trivial

implementation decisions very useful. One of the founders of Company D said “I think

that they got used to basically involving us in their decision-making even though on a

relatively trivial scale so that they’d ask about everything… And then we could

understand and be involved in making those decisions about, how much debt and things

will take on, even though we didn’t call it debt. And there was a point probably about

two-thirds of the way through the project where ‘cause we’d often get updates on

estimates of hours required to complete certain tasks so we’d keep an eye on how much

money we were spending.”

www.manaraa.com

265

TABLE III - ORGANIZATIONAL FACTORS INFLUENCING TD IN STARTUPS

Factor Level TD Reason

Experience of

developers

low

(junior)
increases

poor design decisions

(unintentional)

high

(senior)

increases
aware of benefits of TD

(intentional)

decreases
used to produce high quality

software

Software

knowledge of

founders

low decreases

unaware of benefits of TD, a large

investment for developers causes
desire for high-quality

high increases
develop product themselves, code

viewed as expendable

Employee

growth

stable stable

devs already familiar with code

(and its TD), no impact to
customer

increasing decreases

existing devs refactor to make
onboarding easier

existing devs refactor to prevent a
culture of “bad” code

new devs refactor because code
not readable

Uncertainty
high increases reduce development time and cost

decreasing decreases TD repaid after market validation

Lack of

development

process

--- varies ad hoc decisions

Autonomy of

developers

high varies

developers make decisions without

any guidance (possible poor

business decisions)

low varies strategic decisions made

Answer to RQ1: We identified six organizational factors that influence the
accumulation of technical debt: experience of developers, software knowledge of
startup founders, employee growth, uncertainty, lack of development process, and
the autonomy of developers regarding technical debt decisions. The results are
summarized in TABLE II.

www.manaraa.com

266

16.5.2. What are the challenges and benefits of deliberately

introducing Technical Debt for software startups?

(RQ2

In this section, we explore how software startups determine and reason about both the

challenges and benefits of intentionally introducing TD. In general, startup companies

deliberately introducing TD, have a positive attitude of doing that. They are also relatively

aware of the harmful effects these decisions can have on the future software in terms of

impeding innovation and expansion of their software systems.

16.5.2.1. Benefits of intentional technical debt

We identified many benefits of intentionally introducing TD in software startups.

Cutting development time in order to be able to release the product as quickly as possible

is seen as a large benefit for startups. Getting to market quickly can:

• enable fast feedback from the customers. An interviewee in Company A said:

“We prefer to cut some corners to improve the speed, and get something out

instead of making it more mature directly” ….”It is more important to get to the

market fast and get feedback from the users, then to focus on avoiding TD, taking

on TD is ok.”

• increase revenue. One of Company C’s founders said, “Yeah, we probably

wouldn’t have got the contract earlier, right… Then we wouldn’t have the

capital”. Another participant from Company A said “we are a startup, and we

need to make money. We need to get things working, but they don't need to be

perfect”.

Another benefit is the preservation of startup capital since commonly startup

companies have less money in the early stages. A participant from Company D stated,

“it’s just that we had to get the code out the door. And we had to get it so that we could

afford it.” Another participant from Company F said “by taking the first technical debt,

we spent 10% of what we would have spent if we would have done the whole product

without TD.”

Related to saving money and time, another benefit is the decreased risk. Since the

startups involve uncertainty, it is sometimes wise to invest as little money and time as

possible prior to validating the idea through evaluation of the product. A participant from

Company F said: “In case the product would turn out to be a failure, we would have saved

90% of the money…we avoided a big risk, and we reduced uncertainty thanks to technical

debt. It was a great decision, I think.”

Intentional TD also allows startups to stay flexible. When they do not spend large amounts

of money or time developing new features, they are more willing to discard them and

alter the product significantly when needed. Thus, the TD allows them to make more

objective decisions. “If you put too much time and effort in there, it could be harder to

www.manaraa.com

267

throw it away in the next version. So, I think it's not always bad that you don't do the

best”.

16.5.2.2. Challenges of intentional technical debt

Despite the benefits of intentional TD, we also identified challenges since the sub-optimal

solutions would eventually need to be fixed.

The two investigated companies who initially hired an external consultancy company to

implement the first software solution failed in doing so. Most of the initial implementation

was later removed and replaced by in-house developers, causing significant delays and

additional expenditures. In such extreme cases, TD can cause the product failure or a

business disruption.

Another challenge of TD is the reduced scalability it often introduces. “If you validated

it and it’s looking good, you wanna be able to put your foot on the gas and go quickly and

scale. And if the architecture’s not ready…” A first, light and sub-optimal solution may

only work in a specific setting but will need to be refactored in order to scale the software.

One developer from Company A put it “growing is not just like taking what we have and

do the exact same thing because that will only scale to a specific limit…There was no

segmentation of the code in any part. We started to split the code up, we started to segment

and to separate the code, so that we also can scale different part of the code.”

The interviewees mentioned different TD types such as architectural, infrastructural and

source code related TD as having a substantial negative impact on the system growth.

Another challenge is that the harmful effects of TD increases in severity as the software

grows and when more developers were involved in the development process. Thus, the

introduction of TD can have compounding effects on the development time and

resources, since it will take more time to develop code on top of existing TD. Then, if the

TD is removed later, it all of the code built on top of the TD will also potentially be

impacted. As one interviewee at Company B put it: “In a greenfield project, I think there

is an argument hacking together something that works quickly. But as time goes on, the

quality of real code, or its readability and then how easy it is to work with, it becomes

more and more important.” Another challenge is that fixing TD could increase risk.

When fixing TD, it might create new bugs in the code, adding to the amount of future

work that needs to be done. “The bugs will probably grow, especially if we try and fix it,

spend time trying to fix it.”

Finally, the introduction of TD requires the loss of productivity to be managed later.

We found that during the early phases, startups rarely manage their TD and decisions are

often made on an ad hoc basis. For the four companies who ran SonarQube during our

study (A, B, C, and D), they were all surprised that more TD than expected was identified.

All the startups felt such a tool would be useful to manage TD in the future. As the founder

from Company D said, “I think this is very useful in terms of prioritizing the, you know,

the back end of what we have and what we need to sort of like work on.”

www.manaraa.com

268

16.5.2.3. Good Enough Level

When startup companies deliberately introduce TD, they implicitly decide what a Good

Enough Level (GEL) of the software quality is and what amount of TD is acceptable to

take on. They weigh the benefits and challenges of the TD when making their decisions

(illustrated in 1). However, it is not usually an easy decision. A founder of Company D

said “It’s difficult to balance where you’re constantly making decisions how do we

balance what we’re spending on this, versus the likelihood of producing these results.”

Figure 2. Good Enough Level is achieved by considering the ideal balance between the

benefits and challenges associated with intentional TD.

16.6. Discussion

In this section, we discuss recommendations for startups, compare our results to existing

knowledge on accumulation and refactoring of TD in other contexts, and describe the

limitations of this study.

16.6.1. Recommendations for software startups

Based on the finding related to the organizational factors that influence TD in startups

and the benefits and challenges associated with TD, we have the following

recommendations for startups.

Balanced experience levels (of developers) needed. We found that junior developers

often introduce unintentional TD. Senior developers are often more calculated in their TD

Answer to RQ2: Intentionally introducing technical debt allows startups to cut
development time, enabling faster feedback and increased revenue, preserve their
resources, decrease risk, and make more objective decisions. However, the technical
debt causes reduced scalability, becomes more severe as the product grows, and
introduces future development risks. Thus, deliberately introducing technical debt
brings both benefits and challenges and startups must weigh these to determine a
“Good Enough Level”.

www.manaraa.com

269

decisions. However, senior developers may be less risk adverse, having more experience

working on more structured, mature products where quality is paramount. A mix of both

senior and junior developers seems ideal to find the right balance between TD and quality.

These results are in line with the ideas of Crown [235], who states that “The principal

developer for the company must be highly experienced, and familiar with all aspects of

software engineering practice. This person must also be an accomplished technical leader,

as they will need to influence their less experienced colleagues”. Though, we advocate

that junior developers are equally important.

Unbiased technical advisors needed. When the startup founders do not have software

development knowledge, those implementing the software are likely to make decisions

that benefit their own needs, rather than the startup company. For example, they may cut

corners to save their own time, or they may gold plate the software to build up their own

reputation (and to increase their own revenue). Thus, startup founders who lack software

development expertise should consider seeking technical guidance from someone other

than the company or developers they hire to implement the solution so they can obtain

unbiased advice related to TD decisions. Depending on the stage of the startup (and the

available capital), this advice could be obtained by the introduction of a CTO or from an

external consultant.

Consider “contagiousness” of TD in prioritization. We found that TD is often removed

as the number of developers increases. This is in line with the results of Gralha et al. [17].

We found there are various reasons for this decrease in TD. One of which is the removal

of TD that could be “contagious” – new developers may model their code off existing TD

or may directly duplicate poorly written code. Thus, in addition to prioritizing TD that

might block key features planned in the upcoming iterations, contagious TD [163] should

also be prioritized, especially during times of growth in the development team. If such

TD is not removed, it can generate new TD in a vicious spiral, reducing the growth time

and compromising the code and culture of the startup in the future.

Encourage autonomy with high-level guidance. We found that in most startups,

developers make TD-related decisions with full autonomy. Thus, they could possibly be

making poor business decisions without considering the strategic repercussions of their

decisions. Providing overall guidance to the developers, so they know what level and

types of TD are appropriate can mitigate this risk, while still maintaining developer

autonomy.

16.6.2. Strategy to balance TD over time

Startups need to balance several factors affecting the accumulation of TD, to reach a Good

Enough Level. However, how do startups do this over time? We report, in Fig. 22, a first

interpretation that helps to understand the strategy adopted by the studied cases in

different phases.

Fig. 2 shows the accumulation of TD with respect to each startup phase and key events.

The black line suggests the accumulation of Technical Debt that has been preferred by

the studied startups. We also show GELs ("Good Enough Level”), or else thresholds

under which TD needs to be kept via strategic refactorings, otherwise causing possible

www.manaraa.com

270

disruptive events (red lines and crosses). Finally, in the bottom of the picture, we outline

which mechanisms have been reported by the participants to be necessary and effective

to keep a GEL of TD in a specific phase.

In the startup phase, startups recklessly accumulate TD. This has been reported to be not

only necessary, but very valuable to quickly satisfy the first customers, to reduce risks

and costs. However, too much TD can still be disruptive in the first phase, leading to

product failure and business disruption, if the acquired TD prevents the successful

delivery of the MVP itself. In particular, the cases report that the domain specific

technology needs to be well understood and that the usability of the product should not

be overlooked (GEL1). In the stabilization phase, a partial refactoring (Stabilization

refactoring) is recommended to reach GEL2. In this case, the TD to be prioritized is the

one blocking key features planned in the upcoming iterations for the delivery of the

product to key customers. In addition, TD that is judged to be especially contagious

(likely to spread to the new features and to be picked up by new developers) should be at

least considered. The challenges if the startup fails to keep this level of TD is the difficulty

(if not the halt) of evolving the system with new features, with the consequent loss of key

customers. Additionally, while entering the growth phase, TD that is accessed by new

developers can generate new TD in a vicious spiral, reducing the growth time and

compromising the code and culture of the startup in the future. Here the high-level

guidance and the experience of the developers are key to keep the right level of TD, but

a budget needs to be allocated for the refactoring to reach GEL2. During the growth phase,

there is a need to remove some more TD (Growth refactoring) to reach a GEL3. If the

contagious debt is not removed in the previous phase, it needs to be removed here before

hiring new developers. In addition, the code is optimized to be scalable and to be delivered

to several customers in the market: the architecture of the system should be refactored to

allow the productive management of customer variability, to reduce the cost of

maintenance and operations for the developers, to avoid a loss of productivity. In the

growth phase, several other mechanisms can be introduced to not only reduce the current

TD, but also to prevent the accumulation of future TD (e.g. tools, processes). TD needs

to be well communicated in order to make business decisions. In their maturity phase,

startups seem to start behaving like mature companies. However, in this study, we do not

have enough cases to report common practices related to this phase.

www.manaraa.com

271

Figure 3. TD balanced differently in different phases

16.6.3. Differences with TD Management in Large

organizations

Looking at the current literature, we can see some differences with how startups

accumulate and refactor TD, compared to mature organizations.

In both startups and mature organizations, there is often a peak of accumulated TD at the

beginning of feature development [110]. However, in mature organizations, there is

usually a defined quality threshold, in the form of the desired software architecture or

other quality models. In such cases, TD is referred to the divergence from such desired

thresholds. Such reference points do not seem to exist in startups. Consequently, they tend

to accumulate more TD, which is also considered a benefit. There is, naturally, some level

of uncertainty in both startups and mature organizations at the start of a new project.

However, the uncertainty in young startup companies is greater than in a mature company

[240]. Thus, taking on a right amount of TD seems to be a well-established strategy to

deal with the high levels of uncertainty.

Startups rely more on junior developers than in large organizations [241]. Such junior

developers are less experienced, and they are less aware of the long-term effects of TD,

which consequently leads them to be keener to accumulate it. This choice seems to fit

with the importance to accrue TD in the startups. However, as we have seen in all the

analyzed cases, an experienced developer (technical lead or CTO) is crucial in the startup

team to keep the TD level to desired thresholds. In contrast, in large organizations, most

of the team members are expected to have a higher understanding of TD and to make sure

that TD is not accumulated [164]. The main constraint is that code developed by large

www.manaraa.com

272

organizations is continuously integrated with a large codebase and needs to be available

and reliable for other teams’ work. This is a constraint that does not exist in the startup

and stabilization phase of startup companies but comes into play when the startup enters

the growing phase.

A similar difference can be seen with respect to processes and tools: a recent survey in

the large organization [164] highlights how a third of the participants, answering the

survey, use tools to track TD. In startups, we could see the complete lack and conscious

avoidance of such processes and tools until the company reaches the growing phase. On

the other hand, both in startups and partially (2/3 of the participants) in large organizations

[164], we notice the lack of knowledge on how to implement such processes and what

tools to use to keep TD at bay. Learning how to manage TD seems to be equally important

for large companies and for startups entering the growth phase.

In summary, despite some similarities exist regarding TD management between large

organizations and startups, the first three startup phases are fundamentally different from

the everyday work in large companies. This is due to the level of uncertainty, the

environment, and the business context being very different. In conclusion, the strategic

management of TD in startups should not follow best practices related to large

organizations. In this study, we are contributing to new knowledge reporting some first

recommendations and experiences on how TD is managed in startups.

16.6.3.1. Limitations and Threats to Validity

The main limitations of this study are related to the limited sample of startups investigated

and to the qualitative nature of the investigation. However, these are limitations that can

be considered acceptable in light of the exploratory purpose of this study. We preferred

to gain a deep and rich understanding of the context of a few cases to build a holistic first

theory rather than surveying the topic on a high level only. Specific threats to validity

include construct validity related to the concept of TD, external validity with respect to

the limited contexts analyzed, and reliability of the results affected by the high level of

interpretation that both interviewees and researchers might have been injected in the study

[73]. To mitigate construct validity, we held a workshop with several of the participants

in the startups to clearly define and align on what TD was. We gave concrete examples,

we used the up to date definition of TD reported in the Dagstuhl seminar [4], and we

asked the participants to share examples in order to test if their understanding matched

the community’s definition. Additionally, when asking questions, we have always asked

and probed the claims by inquiring for additional concrete examples.

To mitigate the external validity threat, we collected information from two different

countries in different geographical areas. In addition, the case companies represent

different segments, and we interviewed different roles, from developers to CTOs to

CEOs, to external advisors. Although we do not claim to provide fully generalizable

results in this exploratory study, we have aimed at maximizing the coverage of our cases.

Furthermore, we plan to expand our sample in the future, to reach a higher degree of

validation of our results.

www.manaraa.com

273

Reliability threats were mitigated by assuring that two researchers were always present

when conducting interviews, that one of the researchers was always attending all

workshops and interviews for consistency purposes, and that the analysis was organized

in two groups where researchers analyzed the codes separately and then merged the

findings. In other words, we made sure that different observers were contributing in

different phases of the data collection and analysis, reducing the bias of single researchers.

16.7. Conclusion

This exploratory study set out to provide a first understanding of how software startups

reason about TD. Through interviews with 16 software professionals in seven different

startup companies, we identified six organizational factors that influence the

accumulation of TD in software startups (experience of developers, software knowledge

of startup founders, employee growth, uncertainty, lack of development process, and the

autonomy of developers regarding TD decisions). We also found that startups must strive

towards a Good Enough Level, over time, for their product, while weighing the benefits

and challenges associated with taking on TD. This study provides a set of

recommendations and a first strategy which can be used by software startups to support

their decisions related to the accumulation and refactoring of TD.

www.manaraa.com

274

www.manaraa.com

275

17. Technical Debt in Safety-Critical Software

This goal of this chapter is to explore how the regulation of SCS affects the management

and the growth of TD.

In recent years in the software industry, the use of safety-critical software is increasing at

a rapid rate. However, little is known about the relationship between safety-critical

regulations and the management of technical debt. The research is based on interviews

with 19 practitioners working in different safety-critical domains implementing software

according to different safety regulation standards. The results are three-fold. First, the

result shows that performing technical debt refactoring tasks in safety-critical software

requires several additional activities and costs, compared to non-safety-critical software.

This study has also identified several negative effects due to the impact of these regulatory

requirements. Second, the results show that the safety-critical regulations strengthen the

implementation of both source code and architecture and thereby initially limit the

introduction of technical debt. However, at the same time, the regulations also force the

software companies to perform later suboptimal work-around solutions that are

counterproductive in achieving a high-quality software since the regulations constrain the

possibility of performing optimal TD refactoring activities. Third, the result shows that

technical debt refactoring decisions are heavily weighed on the costs associated with the

application’s recertification process and that these decisions seldom include the benefits

of the refactoring activities in a structured way.

17.1. Introduction

Safety-critical software (SCS) applications are increasingly affecting our lives and

welfare as the amount of software embedded in cars, medical devices, and airplanes are

increasing at a rapid rate. The trend points toward using more and more software in safety-

critical products. The domain of SCS applications is characterized by regulatory

requirements to which companies’ software must adhere before they can place their

applications on the market.

At the same time as the SCS is being used in critical applications that can endanger

people, equipment, and environment [242], these software companies also need to focus

on delivering customer value, from a short- and long-term perspective. Similarly to non-

safety-critical projects, the safety-critical projects also have to develop software faster

and more cost-efficiently and are thereby also incurring Technical Debt (TD).

The TD metaphor was introduced by Ward Cunningham [91] to describe the need to

recognize the potential long-term negative effects of immature code that is made during

This chapter has been published as:

How Regulations of Safety-Critical Software Affect Technical Debt

T. Besker, A. Martini, and J. Bosch

45th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA), pp. 74-81, 28-30 Aug. 2019.

www.manaraa.com

276

the software development lifecycle. This debt potentially has to be repaid with interest in

the long term. Interest is the negative effect in terms of the extra effort and activities that

have to be paid due to the accumulated amount of TD in the system, such as executing

manual processes that could potentially be automated or expending excessive effort on

modifying unnecessarily complex code, or performance problems due to lower resource

usage caused by inefficient code and similar costs [7],[151]. When TD is present in the

software, the only significantly effective way of reducing it is to refactor it.

While there are several similarities between non-SCS and SCS, there are also several

major differences. One of the most significant differences is that SCS are heavily

regulated and require certification against industry standards. These standards have,

among other issues, an adverse impact on the process of conducting refactoring tasks. For

example, after a refactoring activity in an SCS, the concerned software component needs

to be recertified (e.g., retested, revalidated, reverified, etc.) to ensure compliance with the

present safety standards. This recertification process requires several extra activities

compared to non-SCS, and this process is commonly a very cost- and time-consuming

practice. Thus there is a significant potential risk of TD refactoring initiatives being

down-prioritized or even proactively avoided with the negative consequence of an

increasing and alarming amount of TD in the SCS.

Further, in SCS systems, different components can have different levels of safety

regulations, which defines the recertification scope. This means that even if the

refactoring changed only a modest part of the software, the recertification cost and effort

can, nevertheless, be substantial if the scope of the concerned component is large [243].

A key solution to alleviate this issue is to design a sound architecture and validate it

against the criticality of the software [244]. These settings stress the importance of a

software architecture that facilitates refactoring with as little effort and cost as possible.

Although there are several research publications addressing TD and some publications

related to SCS, to the best of our knowledge, this is the first empirical study focusing on

the impact of the SCS standards related to the management of TD in today’s software

industry.

Our overall research goal is to understand how refactoring initiatives of TD are affected

by the SCS regulations. In particular, we are interested in what additional activities are

necessary for TD refactorings in response to the requirements of SCS and how these

activities influence the decision-making process of TD.

Therefore, we aim to answer the following research questions:

RQ1: What are the consequences and effects of SCS regulations when conducting

or planning for TD refactorings?

RQ2: What factors influence the decision-making of TD refactoring in SCS?

RQ3: What software architectural structures contribute to TD refactorings in SCS?

www.manaraa.com

277

This study makes a novel contribution to research, with respect to the existing body of

knowledge on TD, in the following areas:

1. Based on this study’s result, we show that there are several consequences of the

SCS regulations that need to be addressed when planning for and/or conducting

TD refactoring activities in SCS.

2. We present results showing that the effect of these consequences has a

significant impact on the SCS in terms of, for example, the amount of TD and

the requirement of enhanced implementation guidelines.

3. The results show that when comparing the cost and benefit side of TD

refactoring activities in SCS, such analysis has a strong focus on the cost side

and pays less attention to the benefit side.

4. This study provides new insights into TD research by revealing that the

architectural structure in SCS is of significant importance, where a component-

and/or layer-based architecture facilitates and encourages remediation of TD.

The remainder of this paper is structured in seven sections, as follows: In section 2, we

discuss related work. Section 3 describes the research methods in detail. Section 4

presents the research results. Sections 5 and 6 discuss the findings and threats to the

validity of the study, respectively. Section 7 concludes this study.

17.2. Related work

This section presents related work concerning safety-critical software (SCS) and technical

debt (TD).

17.2.1. Definition of SCS

An SCS is a software system the correct operation of which impinges directly on human

safety. SCS is defined as: “systems whose failure could result in loss of life, significant

property damage, or damage to the environment.” [245]

17.2.2. Use of Standards and Safety Integrity Levels

SCS is mandated by law or strongly recommended to adhere to region-specific regulatory

standards. This means that the software applications are required to pass a regulatory audit

process before their placement on the market.

Several international standards guide software companies regarding regional regulations

in safety-critical domains and prepare for the regulatory audits. However, these standards

are continuously developing [246]. Some standards are general in scope and apply to a

broader range of systems, for example, ISO 61508 that covers electric, electronic, and

programmable electronic safety-related systems, [247] whereas other standards are

www.manaraa.com

278

sector- or system-specific, such as IEC 60601 for medical devices, ISO 26262 for

functional vehicle safety, and RTCA/DO178B standard for avionics and airborne

systems. Within the standards, there are different risk classification schemas. For

example, in the ISO 26262 standard, there are four different levels called Automotive

Safety Integrity Level (ASIL, level, A to D), which all identify different safety-critical

requirements. Likewise, the RTCA/DO178B standard has five different safety levels

(DAL, level E to A).

17.2.3. Technical Debt and Safety-critical Software

While delivering on time and within budget are important aspects of every software

project, when developing SCS, additional aspects such as reliability and maintainability

are also of major importance to avoid high failure costs [248]. Ghanbari [248] states that

developers are forced to introduce TD in critical software due to requirement ambiguity,

diversity of projects, inadequate knowledge management, and resource constraints.

However, his study does not explore the impact the various safety regulatory aspects have

on the introduction and growth of TD followed by the possibility of performing TD

refactoring tasks.

17.3. Research method

Given the exploratory nature of the study, we performed a multiple case study with four

cases. The study includes focus interviews with 20 practitioners specializing in different

application domains.

17.3.1. Case selection

Following the classification provided by Yin [66], this study is an embedded case study

in which multiple units of analysis are studied in one case [86].

Participating companies were recruited using a non-probability sampling technique [86]

of companies developing SCS within our industrial network. Our contact person selected

the interviewed professionals from the companies at each company with the goal of

inviting several different roles having different levels of responsibilities and experiences

with SCS.

A brief description of the participating companies and respondents is presented below

and summarized in Table I. On average, the interviewees had 17 years of experience in

software engineering in general and 12 years working specifically with SCS. For

confidentiality reasons, the companies have been anonymized in this study.

Company A is a large company within the automotive industry located in Sweden with

many sites or daughter companies worldwide. In their product domain, SCS plays a key

role and will become even more important and critical in their future product release plan.

The company is subject to the ISO 26262 standard. All SCS are internally assessed for

https://www.iso.org/standard/41986.html
https://www.iso.org/standard/43464.html
https://en.wikipedia.org/wiki/ISO_26262
https://www.iso.org/standard/43464.html

www.manaraa.com

279

consistency with their current standards before going into production. This company has

worked actively with remediation initiatives of TD for several years and has, in general,

a high awareness of the negative consequences of TD.

Company B operates within the aeronautics segment where a major share of the

developed software is characterized as safety-critical and applies commonly to the highest

safety-critical level within this domain. The company bases its development process

around the RTCA/DO-178B standard. All SCS are internally assessed and certified before

going into production. This company has, in general, a high awareness of the negative

consequences of TD although their TD management process and goals are not explicitly

stated within their organization, and they have not dedicated a certain amount of budget

to remediation of TD.

Company C is a leading consultant company within the SCS domain in Scandinavia

today. The company generally operates within several different business areas, but the

interviewees in this study mainly work with safety-critical applications within the defense

and aeronautics segment, developing software under the RTCA/DO-178B standard.

TABLE I - CHARACTERIZATION OF RESPONDENTS

CompId /

RespId

Selection of Respondents

Role
Experience

with SCS

Software

Experience

(incl. SCS)

CA / R1 Solution Architect 18 25

CA / R2 Software Architect 2 17

CA / R3 Product Manager 25 25

CA / R4 Solution Architect 20 21

CA / R5 Software Architect 20 33

CA / R6
Software Integration
Architect

2 13

CA / R7 System Safety Leader 10 24

CA / R8 System Safety Engineer 3 4

CA / R9 Solution Architect 5 10

CB / R10 Line Manager 7 20

CB / R11 Material Group Manager 19 19

CB / R12 Software Architect 21 30

www.manaraa.com

280

CompId /

RespId

Selection of Respondents

Role
Experience

with SCS

Software

Experience

(incl. SCS)

CB / R13 Project Leader 6 12

CB / R14 Software Architect 10 12

CB / R15 Product owner 12 14

CB / R16
Funcional Safety

Technical Leader
3 5

CB / R17 Tester 12 20

CB / R18 Tester and Developer 3 3

CC / R19

Responsible for the

technology of safety-
critical system

engineering

21 6

17.3.2. Research design

As illustrated in Fig. 1, this study’s research design was divided into five phases. The

following sections describe these phases and the related research methods used in each

stage.

Fig.1 Visualization of the research model and method and activity used in each phase.

www.manaraa.com

281

17.3.2.1. Contextual Analysis and Design

First, the study was presented in a cross-company workshop with managers from the

participating companies. The goal of this workshop was to explore the area of TD in SCS

applications briefly and to define the overall aim and scope of this study.

17.3.2.2. Preparation

Following the guidelines of [67], we emailed an invitation letter describing the study to

those 19 interviewees who had agreed to participate in the study. The letter included

educational material intended to minimize inter-observer and inter-instrument variability.

All distributed educational material has been made available at

https://doi.org/10.6084/m9.figshare.7725857.v1 .

17.3.2.3. Qualitative Data Collection

In the third phase, we employed semi-structured interviews in which the interview guide

was defined in advance, but the questions not necessarily asked in the same order,

allowing flexibility to explore interesting insights as they emerged. Examples of interview

questions are presented in Table II and grouped by the corresponding research question.

The interviews were conducted between January and February 2019. Each interview

lasted between 60 and 90 minutes. To obtain a more accurate rendition of the interviews,

all interviews were digitally recorded and transcribed verbatim. All interviewees were

asked for recording permission before starting, and all interviewees agreed to be recorded

and to be anonymously quoted for this paper. The interviewer also informed the

interviewees that participation was voluntary and that the interviewee could cancel the

interview at any time.

TABLE II - EXAMPLES OF INTERVIEW QUESTIONS

RQ Examples of Interview Questions

1

• What extra activities need to be done after a TD refactoring (compared to

non-SCS)?

• Do you ever consider avoiding or postponing a TD refactoring activity

and instead pick another solution, like a work-around?

• What is the main reason for doing work-arounds?

2

• Do you do a cost-benefit or a change impact analysis (or something else)

before making TD refactoring decisions?

• Do you have any kind of report template describing the possible change

before making the decision of refactoring TD or not?

• Do you think that you would refactor more TD if it were for the SCS

regulations?

https://doi.org/10.6084/m9.figshare.7725857.v1

www.manaraa.com

282

RQ Examples of Interview Questions

3

• Please describe the structure of the different safety levels in your software

architecture briefly?

• Do you think that the architectural design is different in your software due

to being an SCS (and in what way)?

• From a TD refactoring perspective, do you think your software could be

designed in another way to make the TD refactoring more easily and cost-

efficient?

17.3.2.4. Analysis and Synthesis of Qualitative data

The acquired qualitative information collected in phase 3 was analyzed using thematic

analysis [84] to identify, analyze, and report patterns and themes within the data. The

thematic analysis was conducted using the following five steps.

1) The audio-recorded qualitative data collected from interviews were transcribed, and

we familiarized ourselves with the data through careful reading of the transcripts to

acquire a holistic overview of the content.

2) The initial codes were constructed from the data, and the data were organized into

distinct groups using a thematic map [249]. To assist this phase of the analysis, a

qualitative data analysis (QDA) software tool called Atlas.ti was used.

3) The themes were identified by organizing the codes into potential themes and

collecting the relevant coded data extracts within each theme. Each extract of data

was assigned to at least one theme and, in many cases, to multiple themes. For

example, the citation “we track every cost of requirements, verification tests, so

everything has to be tracked to the top level design” was coded as “Cost of

Refactoring” in the theme “Decision-making of TD refactoring.”

4) This phase focused on identifying the essence of each theme and determining what

aspect of the data is captured by each theme. This phase also stressed the importance

of not just paraphrasing the content of the data extracts but also identifying what is

interesting about them and why.

5) The final phase of the thematic analysis took place when we had a set of fully

developed themes; it involved the final analysis and write-up of the publication.

Fig. 2 shows a subset of the result of the analysis process where the mapping between

different hierarchical code levels and the taxonomy are illustrated. Due to space

limitation, this figure represented a curtailed and reduced part of the complete data

collection map.

www.manaraa.com

283

Fig. 2 Subset of Coding Scheme

17.4. Results and findings

The following subsections present results for the research questions presented in Section

I and are grouped according to each research question.

17.4.1. Consequences and Effects of SCS Regulations

when Conducting or Planning for TD Refactoring

Activities (RQ1)

Our analysis identified several factors that, due to SCS regulations, are affected when

planning and/or conducting TD refactoring activities. Our result indicates that TD

refactoring of SCS requires several additional activities and costs, compared to non-SCS.

To fully understand the consequences of the SCS regulation on TD refactoring activities,

we first describe the background of the consequences and thereafter we present their

effects.

The consequences of the SCS regulations on TD refactoring activities are grouped

and summarized into the following themes:

17.4.1.1. Additional documentation

Before performing a refactoring activity, there is often an additional need to create new

safety cases with new safety analysis to show that the SCS regulations properly adhere.

There is also an extensive amount of documentation describing the source code and its

dependencies that need to be updated after a refactoring activity. This situation can

www.manaraa.com

284

introduce additional documentation debt, and one interviewee describes this, “We can

change the code if it's really important, but you don't change it in the complete

documentation, because the documentation has a hundred references down to other

documents.”

17.4.1.2. Additional simulations/emulation

After a TD refactoring activity, the altered application commonly needs to be tested and

run in simulation and/or an emulation environment. This activity is both time-consuming

and potentially dependent on resources from other departments. This activity also

commonly comes with additional license costs for using this equipment and tools. This

issue was mentioned by one of the interviewees, “One of the biggest challenges

performing refactorings in safety-critical software refers to the testing since sometimes

you have limited access to the equipment that you need, and that can slow you down for

weeks if a lot of people need the same shared equipment…and these equipments can cost

billions of Swedish crownes”.

17.4.1.3. Additional risk assessment

Refactoring of SCS activities requires additional risk assessment due to potential time

delays, since the complete refactoring process includes and is dependent on staff and

resources from several other departments, and not only the staff who performed the initial

refactoring task. This dependency on external resources entails a reduced control over the

strategic planning and management of time.

17.4.1.4. An extended test scope

Testing refactored SCS often requires not only testing the specific isolated refactored

component; the test scope is also commonly extended to related components/subsystems

This is commonly referred to as “freedom from interference” and refers to that an

alteration in one component will not lead to a fault in another more safety-critical

component. One interviewee from company A it this way: “In safety-critical software,

the freedom of interference is very important. Meaning that you say to someone, ‘If I do

this, does it affect anything else?’”

There are also refactoring tasks that potentially can lead to the need for retesting of the

complete application. One interviewee from company A describes the test process of a

complete application: “At a minimum, you have to drive some laps of 100,000 km to

make sure that the system [a vehicle] is working as it was before [the refactoring].”

17.4.1.5. All TD refactoring activities are concerned

The interviewees described that the additional activities and costs apply not only to major

refactoring activities; they commonly also apply to minor refactoring tasks. This implies

that even minor refactoring activities could cause significant costs and activities, and

www.manaraa.com

285

often the practitioners could not perform refactoring activities without assistance or

authorization from colleagues or managers.

17.4.1.6. Requires recertification or requalification

Another consequence with the significant impact of a TD refactoring is the requirement

of recertification or a re-qualification of the concerned part of the SCS. This process

commonly involves an internal audit of the concerned components and its related

components due to dependencies among them. This process was described as very

expensive, laborious, and time-consuming for the projects but also dependent on the

involvement of staff and resources outside the direct software development projects. One

manager at company B addressed this issue: “Usually, when we have the certified

software, it is rare that we go back and do refactoring of technical debt. We try to have

all those discussions before the certification, and usually, the reason is the cost of the

recertification process and the effects of other related software that also would require

recertification”.

The effects of the consequences are grouped and summarized into the following

themes:

17.4.1.7. Proactive guidelines

Since the refactoring of TD in SCS requires both extra activities and costs, it is of vital

importance to implement SCS solutions as optimally as possible from the very beginning.

This was addressed by a proactive mindset by all the companies in this study, and this

strategy influenced all the different parts of the development process. For instance, an

interviewee from company A described that, due to the SCS regulations, their

development process explicitly uses reinforced development guidelines designed

specifically to reduce the introduction of TD and thereby proactively reducing a future

need of performing TD refactoring tasks: “We wanted to build a high-quality system in

general, but we put extra focus on the guidelines based on the safety-criticality of the

software.” A similar strategy was also used at company B where their implementation

guidelines included customized advice and rules on how to implement the software

according to each of the concerned safety-critical levels, and they also have a strong focus

on the review process of the implementation: “So, as a developer, you’re not allowed to

make your own decisions on how to do software. It’s reviewed, and the source code is

reviewed by many people many times.” This view was echoed by another respondent at

the same company, “Our code guideline is very strict, and compared to non safety

software, our guideline is much stricter….A lot of the rules are there in the guideline to

enforce, for example, compiler behavior and stuff like that.”

17.4.1.8. Avoidance of refactoring activities

As a result of the above-mentioned consequences of performing TD refactoring, several

interviewees describe that, due to extra activities, TD refactoring activities are commonly

www.manaraa.com

286

deliberately avoided with the result of an increasing amount of TD in the software. As

one interviewee at company A expressed, “We have one case right now where, if we

refactor a lot in our present functionality [as we would like], we need to do a new field

test in order to prove that we have the right ASIL level and assessments and so on. So,

we avoid doing it right now because we neither have the time nor resources to re-evaluate

the new solution.”

17.4.1.9. Work-around solutions

Our result also shows that practitioners often develop work-a-round solutions to avoid

TD refactoring activities and thereby to avoid the associated consequences and the need

for the additional activities and costs presented in section IV.B.1. An interviewee at

company A said, “Work-around [to avoid performing TD refactoring] is very, very

common, to be honest.” Commonly, these work-around solutions were done directly in

the software codebase (in a way that required fewer additional activities or

recertification).

There were also situations where the solution was strategically and deliberately done in a

suboptimal way by implementing a work-around solution in a component with a lower

safety-critical level compared to the original component. The main reason for this was

the high difference in development costs and efforts due to the different SCS levels. One

interviewee from company A explained the difference in required working time of

development due to different ASIL levels: “The different [required working time]

between ASIL A, and ASIL B is a factor of 10, between ASIL B and C is also a factor of

10, and between ASIL C and D is a factor of 10. This means that it takes 1000 more time

to go from ASIL A to ASIL D.”

Performing work-around solutions totally outside of the certified SCS scope of the

application was sometimes a common practice to avoid additional refactoring tasks,

where these work-around solutions were characterized as poor architectural design

decisions by adding a significant amount of architectural TD to the software. One

interviewee also described a work-around situation in which the end user of the software

had to perform extra tasks manually when using the application due to the company’s

preference not to refactor TD in the code: “They have instructions for the end user to

handle certain technical debt in the code because it is too expensive to fix it.”

By doing these suboptimal work-around solutions, the architecture was described as

inheriting additional TD continuously. The work-around solutions were commonly

documented less and created difficulties for future architecture since these work-around

solutions commonly generated additional future work-arounds as the work-arounds were

more difficult to refactor. One interviewee described this way: “In some areas, there is

software that nobody understands anymore, so you don’t want to alter things there and

make even more [a] mess of it.”

www.manaraa.com

287

17.4.2. Factors Influencing the Decision-Making of TD

Refactoring in SCS (RQ2)

As mentioned in section IV.A, TD refactoring in SCS is associated with several extra

costs and activities and requires, thereby, for example, additional budget, resources, time,

and a need for recertification or a requalification process (of the software and/or the

hardware). This infers that the overall cost equation formula for TD refactoring activities

for SCS becomes more complicated and extended compared to non-SCS.

None of the investigated companies explicitly performed a cost-benefit (or equivalent)

analysis in a structured way, comparing the benefits of performing the TD refactoring

with the cost of it. The main reason for not conducting such analysis was described in

terms of a lack of data/estimates on the benefit side of the equations (and not in terms of

lacking information on the cost side) both from a direct (from the current situation) or an

indirect (future-oriented) perspective.

As one interviewee said, “We know the costs, but we don’t know the benefits because the

benefit is usually effected by the kind of feature updates that will come in the future, and

we don’t know this and how much time and effort we would save in that case.” The lack

of knowledge about how to calculate the interest cost for the TD items was expressed as

being one major obstacle to performing such evaluation. On the other hand, calculating

the overall costs of refactoring TD were not generally considered as difficult or

cumbersome. By having only data/estimates on the cost side and lacking the equivalent

information on the benefit side was described as heavily influencing the decision-making

of whether to invest in TD refactoring activities or not.

Taken together, our result shows that the TD refactoring decisions are made with cost-

based optimality conditions rather than comparing both the cost and benefit side of the

equation. Several of the interviewees stated that it would be helpful to motivate the need

for investing in TD refactoring activities if they had access to data/estimates on the benefit

side. The interviewees also believed such information would lead to more TD refactoring

initiatives being taken, and thereby the amount of TD in the SCS could be reduced.

17.4.3. Software Architectural Structures Contributing to

TD Refactorings (RQ3)

There are different architectural structures such as component-based, pipes and filters,

monolithic, and layered structures [250]. Our analysis shows that specifically the

architectural structure of SCS has a huge impact on the possibility and probability of

performing TD refactoring activities. SCS based on monolithic architecture components

is characterized by interconnected and interdependent components and were described as

a major hindrance for TD refactoring tasks in SCS due to the interwoven nature of

different components or resources. Several interviewees stated that it is specifically

important in SCS to avoid the monolithic structure since performing refactoring activities

in such architectural settings was described as requiring a huge scope of the software to

www.manaraa.com

288

be recertified or requalified and thereby the remediation of TD were often postponed,

avoided, or managed by doing work-arounds instead.

On the other hand, a modular SCS architecture that structures the application as

components using separations and encapsulation strategies of component-based

structures of loosely coupled units or layer-based structures (or both), were described as

contributing to increased likelihood of TD refactoring tasks in the SCS domain to be

performed. One interviewee describes their architectural strategy this way: “We try not

mixing different concerns and keeping the complexity low by identifying and isolating

the criticality of different domains, using small modularized pieces and keeping the

monolithic approach out.”

One of the most important goals of the architectural design was described in terms of

keeping the overall complexity low by separating the software component while

considering the hardware implementation at the same time. One interviewee expressed

this goal this way: “Keep your life-saving safety-critical parts in a separate piece of

hardware, with a separate process that monitors function etcetera, and to keep the big box

for what it is good at like good for multi-purposing or multi-simulation or concurrent

execution of things, like cloud or machine learning, etcetera.” Such structures were

described as enabling the TD refactoring to be performed affecting a less extensive and a

limited area of the software, thereby making the recertification process more manageable.

The majority of the interviewees described their software architecture as heavily

influenced and tailored by their SCS regulations, and, therefore, the architecture would

have been designed differently if the software did not have to adapt to the safety standards.

One interviewee said of this difference, “Our middle layer in the architecture would have

looked different [if it was not SCS] since the intention of the decision level is actually to

abstract and isolate different ASIL levels because it would be quite hard and expensive

to maintain these dependencies otherwise.”

17.5. Discussion

The result reveals that the SCS regulations have a significant impact on the overall

development process and specifically when planning and/or conducting refactoring of

TD. In this section, we discuss the result for each of the stated research questions.

17.5.1. Consequences and Effects of SCS Regulations when

Conducting or Planning for TD Refactorings

The first research question (RQ1) addressed the consequences and effects of SCS

regulations on TD remediation tasks. The results of this study show that SCS regulations

have an immediate and adverse impact on the refactoring activities of TD. Due to

additional costs and the need for additional activities due to the regulations, practitioners

www.manaraa.com

289

frequently avoid performing refactoring activities, with the consequence of introducing

additional TD in the form of, for example, suboptimal work-around solutions.

One interesting finding is that this negative effect was quite known to the companies and

they had, therefore, created proactive strategies for implementing the software more

carefully with higher quality from the very beginning.

17.5.2. Factors Influencing the Decision-Making of TD

Refactoring in SCS

The second research question (RQ2) in this study sought to explore the influencing factors

which play a role when deciding TD refactoring initiatives. The associated negative

consequences of refactoring activities need to be addressed when making TD refactoring

decisions due to the need for additional activities, additional resources, and also the need

for additional working time. However, because only the information on the cost side of a

cost-benefit analysis was known to the professionals making the TD refactoring

decisions, there is an imminent risk of overestimating the costs of a TD refactoring

activities and underestimating the costs and the negative effects of postponing or ignoring

the presence of TD. The investigated companies all expressed a lack of a quantitative

and/or a qualitative guideline to assist them when making this kind of decision. This

unbalanced cost-benefit equation could potentially cause suboptimal refactoring decision

is made.

17.5.3. Software Architectural Structures Contributing to

TD Refactorings

The third question (RQ3) in this research focused on different architectural structures and

their corresponding impact on refactoring tasks from an SCS certification perspective.

The structure of the SCS software application consists commonly of several different

subsystems, which in turn consist of several different qualified or certified components.

Both the subsystems and the associated components can potentially be of different safety-

critical levels, causing different types of recertification activities after refactoring of the

software.

An obvious finding to emerge from the analysis in this study is that the architectural

structure of the software has a significant impact on the remediation of TD task in SCS,

where a monolithic architecture complicates the TD refactoring activities.

However, even if these findings suggest that a component and/or layer-based type of

architectural structure is, in general, beneficial when reducing the scope of the refactoring

actions, the findings also point to this structure as enabling work-around solutions by

instead altering components that require less or no recertification activities.

www.manaraa.com

290

It is evident from the findings that a component- and/or layer-based architecture facilitates

and encourages remediation of TD, but on the other hand, such structures also contribute

to making suboptimal work-around solutions to avoid optimal TD refactorings possible.

17.5.4. The Counterproductiveness of the SCS Regulations

Independently of domains or regulations, all SCS is heavily regulated and requires

certification against industry standards. One of the main goals of SCS regulation refers to

the accuracy and consistency of the software where the overarching goal is to deliver

high-quality software. Gauging these regulations incorrectly could cause compliance

failure and the creation of a flawed software application consequently escalating costs for

the companies and the potential for loss of life for the user.

However, even if these regulations have the best intention to produce a high-quality

software product, the findings in this study demonstrate that these heavy regulations are

conceivably counterproductive for the achievement of this goal since they potentially can

constrain the possibility of performing optimal TD refactoring activities efficiently.

Due to the lack of information about the interest cost of the TD (as described in section

V.B), there is a potential risk of implementing a work-around solution or postponing the

refactoring task instead of an optimal refactoring activity.

This study’s findings suggest that the SCS regulations have, in several cases, the opposite

effect of what was intended and desired; instead of promoting refactoring activities to

raise the software quality, the regulations contribute to the further introduction of TD and

thereby potentially decrease both the maintainability and evolvability of the software.

Fig.3 exemplifies this potential counterproductiveness of SCS regulation and how

implemented suboptimal work-around solutions contribute to a recursive loop (dashed

line in red) of additional TD followed by a decrease of both the maintainability and the

evolvability of the software.

Fig.3 Visualization of counterproductiveness of the SCS regulation

www.manaraa.com

291

17.6. Limitations and threats to validity

The limited sample of companies investigated (three) and the qualitative nature of the

investigation are the main limitations of this study. However, these are limitations that

can be considered acceptable in light of the exploratory purpose of this study. Our goal

was to gain a deep and rich understanding of the context of a few cases to build a holistic

theory rather than surveying the topic on a high level only. The validity of the study

includes construct validity related to the concept of TD, external validity with respect to

the limited contexts analyzed, and reliability of the results affected by the high level of

interpretation that both interviewees and researchers might have injected into the study

[73]. To mitigate construct validity, we held a workshop with the participating companies

to clearly define the scope of the study, and before conducting the interviews, education

material was provided in which we presented definitions of TD from, for example, the

Dagstuhl seminar [4]. To mitigate the external validity threat, we collected information

mainly from two different safety-critical domains. Also, the case companies used

different safety regulation standards, and we interviewed several different roles, from

developers to testers, to architects and safety technical leaders. Although we do not claim

to provide fully generalizable results in this exploratory study, we have aimed at

maximizing the coverage of our cases. Furthermore, we plan to expand our sample in the

future, to reach a higher degree of validation of our results.

Reliability threats concern whether the analysis and the results depend on the involved

researchers [73]. In this study, we have followed strict protocols and guidelines for

analysis which also is reported in the study. Additionally, all findings were derived by the

first author of the study and after that reviewed by the two other researchers, which we

argue limits the reliability threat.

17.7. Conclusion

This study set out to explore how the regulation of SCS affects the management/growth

of TD. SCS must adhere to domain-specific regulatory frameworks. This means that these

software applications are required to pass a regulatory certification process prior to being

placed on the market.

This study has identified that these SCS requirements pose numerous challenges when

conducting or planning for TD refactoring activities since there are several negative

consequences and effects associated with altering the software. The main consequence of

a TD refactoring activity is related to the costs and efforts of the recertification process,

with the potential risk of either ignoring the refactoring task or performing a suboptimal

work-around solution instead. The results of this study, therefore, indicate that the heavy

SCS regulations potentially can force the companies to perform work-around solutions

that are counterproductive in achieving a maintainable and evolvable software since the

regulations constrain the possibility of performing optimal TD refactoring activities. The

process for making TD refactoring decisions was strongly influenced by and related to

the cost of performing the refactoring and seldom based on the benefits of it. Our result

www.manaraa.com

292

also demonstrates that the architecture of the SCS is important in order to facilitate and

encourage the remediation of TD, where a component and/or layered architecture were

preferred over a monolithic architecture.

www.manaraa.com

293

18. Prioritization of Technical Debt in Backlogs

The goal of this chapter is to assess how the prioritization of TD is carried out in practice

by practitioners in today’s software industry.

Remediation of technical debt through regular refactoring initiatives is considered vital

for the software system's long and healthy life. However, since today’s software

companies face increasing pressure to deliver customer value continuously, the balance

between spending developer time, effort, and resources on implementing new features or

spending it on refactoring of technical debt becomes vital. The goal of this study is to

explore how the prioritization of technical debt is carried out by practitioners within

today’s software industry. This study also investigates what factors influence the

prioritization process and its related challenges. This paper reports the results of surveying

17 software practitioners, together with follow-up interviews with them. Our results show

that there is no uniform way of prioritizing technical debt and that it is commonly done

reactively without applying any explicit strategies. Often, technical debt issues are

managed and prioritized in a shadow backlog, separate from the official sprint backlog.

This study was also able to identify several different challenges related to prioritizing

technical debt, such as the lack of quantitative information about the technical debt items

and that the refactoring of technical debt issues competes with the implementation of

customer requirements.

18.1. Introduction

Technical debt (TD) is a metaphor introduced by Ward Cunningham [91], where TD is

described as a collection of design or implementation constructs that are expedient in the

short term, but set up a technical context that can make future changes more costly or

even impossible [4].

Commonly, software companies need to consider the tradeoffs between the overall

quality of the software and the costs of the software development process in terms of

required time and resources.

Examples of this tradeoff can be seen in scenarios in which companies deliberately or

undeliberately implement sub-optimal solutions to shorten the time-to-market or when

resources are limited in practice. However, if TD is left unchecked in the software, TD

can lead to large cost overruns, causing high maintenance costs due to internal software

quality issues [95] and the inability to add new features [50]; it may even lead to a crisis

point where a huge, costly refactoring or a replacement of the whole software needs to be

undertaken [121]. This stresses the importance of regularly refactoring initiatives in the

software. However, even if the best intention is to refactor TD as soon as possible after it

This chapter has been published as:

Technical debt triage in backlog management

T. Besker, A. Martini, and J. Bosch

International Conference on Technical Debt, Montreal, Quebec, Canada, 2019, pp.

13-22, 2019

www.manaraa.com

294

has been identified or implemented, there is a tendency toward postponement of these

refactoring tasks since, commonly, there are other important deadlines in the near future,

where these refactoring tasks are often down-prioritized in favor of implementing new

features [121].

The decision-making about if and when a TD item should be refactored is commonly

performed as a part of the backlog management (BM) process, where each TD item is

assessed and prioritized based on several different criteria. Thus, the BM process is

important to facilitate the decision-making process to keep the level of TD at bay; it is

also important to understand which factors influence these decisions and what challenges

are faced during the prioritization of which TD items to refactor [164].

In general, TD has been extensively studied, and there are studies addressing and giving

a theoretical recommendation about the prioritization process of TD. However, less

attention has been paid to how the prioritization process of TD is carried out in practice

in today’s software industry. So far, only very few studies [149], [164] have investigated

how the prioritization of TD is practically carried out in today’s software industry.

To the best of our knowledge, this is the first empirical paper focusing on how the

prioritization of TD is practically carried out in today’s software industry together with

an assessment of which issues are affecting the process in today’s software industry.

This study aims to understand how software companies prioritize TD within their product

BM process. In particular, we are interested in how the prioritization process of TD is

carried out in practice and understanding which related factors influence the process

together with potential challenges.

We, therefore, aim at answering the following research questions:

RQ1: How is the prioritization of technical debt carried out, and what factors

influence the process?

This research question will explore how the prioritization process is carried out in practice

and to what extent gut feelings influenced the decisions and whether they are managed

proactively or reactively.

RQ2: What are the challenges of prioritization of technical debt?

This research question aims at identifying challenges related to the prioritization process

of TD.

The remainder of this paper is structured in seven sections, as follows. Section 2

introduces the background related work. Section 3 describes the research methodology.

Section 4 presents the research results. Sections 5 and 6 discuss the findings and threats

to the validity of the study, respectively. Finally, Section 7 concludes this study.

18.2. Research model and background

Initially, we performed a literature review by searching for research publications

addressing the prioritization process of TD. Based on the outcome of this review, we have

a formed a conceptual model as presented in Fig.1. In total, five different dimensions

www.manaraa.com

295

were identified which are particularly interesting when portraying how the TD

prioritization process is carried by practitioners and what related factors influence the

process.

Fig 1. Conceptual Model — Prioritization of Technical Debt

18.2.1. Different approaches to prioritizing TD

From a theoretical perspective, the prioritization process of TD is relatively well

represented by several academic studies. However, there is a current paucity of empirical

research focusing on how the prioritization of TD is carried out in practice.

Numerous papers propose different prioritization approaches to assist the decision-

making process when prioritizing TD [48], [251], [49], [50], [51], [42], [52].

Several of these publications investigate different aspects of the TD that need to be

considered during the process. Frequently, cost-benefit analysis is described related to the

prioritization process [50], but also other perspectives are mentioned. For instance,

Falessi and Voegele [252] focus on the prioritization of violated quality rules. Other

criteria that are proposed when prioritizing TD are, for example, the payment of debt

items based on the impact the TD has on the software from a customer perspective and

the nature of the debt in terms of its severity and localization [49].

In another study, Chatzigeorgiou et al. [253] adopt a prioritization strategy focusing on

the timing of repaying the debt in terms of identifying a breaking point where the interest

of the TD items reaches the level of the corresponding principal. Further on, Snipes et al.

[254] highlight the importance of developing a cost-benefit analysis that also incorporates

the financial aspects of the decision aspects during the prioritization of TD.

www.manaraa.com

296

Guo and Seaman [30] adopt a different decision-making strategy determining the optimal

collection of TD items that should be incurred or held, from the perspective of incurring

TD as an investment. Also, the need for taking the business perspective into account when

prioritizing TD is discussed in a study conducted by Reboucas et al. [255]. According to

another study carried out by Martini and Bosch [121] addressing different types of

information needed by project owners and architects during the prioritization activity of

architectural TD (ATD) shows that vital aspects, such as lead time, maintenance costs,

and risk are important factors to consider during the prioritization process.

The major difference between the above-listed studies and ours is that we focus our study

on how the prioritization process of TD is carried out in software companies in practice.

18.2.2. The presence of TD items in backlogs

Schmid [119] recommends that TD items should be identified in a TD backlog, and a

study by Ernst al. [16] surveying 1831 software engineers and architects found that 31%

of the respondents in the survey stated that TD was an implicit part of their backlog and

25% stated that TD was an explicit part of their backlog. Unfortunately, it is not clear in

that study how the explicitly and the implicitly identified TD items differ. In comparison

to that study, our study aims to understand what different types of backlogs the TD items

are identified in and how they differ in management and during the prioritizing process.

In our recent study [164], we concluded that TD is either documented in a dedicated

backlog for TD issues or in a feature backlog where TD items are mixed with features.

18.2.3. The influence of gut feeling

Both [56] and [52] state that decisions related to TD are largely based on a manager’s gut

feeling, rather than hard data gathered through appropriate measurement. This notion is

echoed by [53] who state that decisions related to cost and scheduling of architectural TD

are often done in an ad hoc fashion, based largely on the experience and gut feelings of

the architects.

However, to the best of our knowledge, no study addresses the influence of gut feeling

on the prioritization process of TD for refactoring.

18.2.4. Estimation of the value of refactoring TD

Cost and value estimations of refactoring initiatives are essential for managing TD since

these estimations assist in planning the work processes and also prevents potential cost

and schedule overruns. However, making cost and benefit decisions regarding TD is

challenging [53], and several authors highlight the difficulties of obtaining such reliable

estimates [53], [54], [55], and there are only very few supporting software tools available

to assist such activities.

www.manaraa.com

297

18.2.5. Reactive- and proactiveness of TD management

A reactive approach refers to what currently is happening to the present project, whereas

a proactive approach focuses mainly on how to improve future projects [56]. When

making decisions related to prioritizations of TD refactoring initiatives, these decisions

can take a reactive and/or proactive approach.

In general, TD management is considered to be largely reactive since it often must cause

significant pain on multiple fronts before it is addressed [16]. [110] state that refactorings

are often overlooked in prioritization and they are often triggered by development crises

in a reactive fashion.

However, none of these studies examines whether the prioritization of TD is driven by a

strategy that is reactive or proactive.

18.3. Research Methodology

The goal of this study is to understand how software companies prioritize TD within their

product BM process. To achieve that, we chose a mixed research methodology by

acquiring both quantitative and qualitative data by performing a multiple case-study on

four software-developing companies. The study includes focus interviews with 17

practitioners specializing in different application domains. Additionally, we collected

data using a survey (n=17).

18.3.1. Case Selection

Following the classification provided by Yin [66], this study is an embedded case study

in which multiple units of analysis are studied in one case [86]. The sample population

was selected using a non-probability sampling technique [86], where the selection of

participant companies was obtained using convenience sampling. The selection of

participants was conducted by first reaching out to contact persons to whom we had direct

access within our network. After describing the study, this person then suggested

colleagues with knowledge about the companies’ prioritization process who were invited

to participate in the study. A brief description of the participating companies and

respondents is presented below and summarized in Table I. For confidentiality reasons,

the companies have been anonymized in this study.

TABLE I - COMPANIES AND RESPONDENTS

Company Description

ID
Application

Domain

Company

Size
Roles

A

Telecommunications

Large

• Manager Architecture Unit

• Program Manager

• Product Guardian

• Software Architect

www.manaraa.com

298

Company Description

ID
Application

Domain

Company

Size
Roles

B

Automotive Large

• Solution Lead

• Delivery Leader

• Solution Architect

• IT Architect

• Business Analysis

C

Mobility Solutions Large

• Software Project Manager

• Technical Team Leader

• Software Architect

D

Packaging solutions

and food processing Large

• Developer

• Line Manager

• Software Engineer

• Software Engineer

• Developer

Company A is located in Sweden, and they are developing software using the Scaled

Agile Framework (SAFe). Using this approach, their BM approach includes the use of a

hierarchical backlog structure in terms of Epics.

The software architects have dedicated board meetings on a weekly basis where (among

other things) they prioritize technical debt. This company has worked actively with

remediation initiatives of technical debt for several years and has, in general, a high

awareness of the negative consequences of technical debt.

The interviewees work both with legacy software with a maintenance focus and with

newer software having a strong customer-requirement focus.

Company B is located in Sweden. Their BM process is synced among different

development teams within the same department in the same country.

The company adopted an agile software development approach where a BM process is

used for planning and prioritizing the development activities within each iteration. This

company has an overall backlog which is broken down into several minor team backlogs,

which are managed by each team.

The interviewees from this company represent both managers who work with the overall

backlog (team A) and developers working with the team backlogs (team B). The items in

the backlogs have a direct connection to external customer requirements.

Company C is located in Sweden, but their head office is located in another European

country. The overall BM process is synchronized between the different countries. The

company uses an agile software development approach where a BM process is used when

prioritizing the development tasks. The interviewees from this company represent two

different development teams from two different departments. The first team A develops

software which is mainly a part of an internally used platform, and thought does not have

an external (outside the company) customer. This teamwork mainly on legacy software,

where maintenance tasks are most common. The second team B works directly towards

www.manaraa.com

299

an external customer, where the user stories are based on the customer requirements. This

team implements continuously new features.

Company D is located in Sweden, but the company has sites in several parts of Europe.

The company supplies complete systems for automation services with extensive in-house

software development of embedded, real-time software systems. The overall BM process

is synchronized between different development teams, located in different countries, and

sharing the same sprint backlog. The software development is today strongly driven by

requirements from external customers.

18.3.2. Research Design

As illustrated in Fig.2, this study’s research design was divided into five phases. The

following sections describe these phases and the related research methods used in each

stage.

Fig 2, Visualization of the research model and method used in each phase.

18.3.2.1. Preparation

First, the study was presented and discussed during a workshop with software

practitioners from software companies within our network, all having an extensive range

of software development. Secondly, an invitation to participate in the study was emailed

to the participants in the workshop.

18.3.2.2. Data Collection (DC1 and DC2). The data collection in this

study was conducted in two phases.

Survey (DC1) - The first data collection phase (DC1) collected data using a survey

questionnaire from 17 software practitioners working at four software developing

companies. All the practitioners were directly involved in the process of prioritizing TD

in their companies’ backlog. The survey proceeding was semi-structured, where one of

the researchers was available and could clarify and explain the objectives of the survey

[256].

www.manaraa.com

300

As illustrated in Table II, the survey included seven statements assessing the prioritization

of TD with respect to the earlier stated research questions. The respondents were asked

to indicate their agreement for each statement in relation to their current working

situation, using a 6-point Likert scale (not at all, to a small extent, to some extent, to a

moderate extent, to a large extent, and to a very large extent).

TABLE II - SURVEYED STATEMENTS

ID Statement RQ

ST1
To what extent do you consider your current BM process also
includes the prioritization of technical debt?

1

ST2
To what extent do you consider the “gut feeling” having an
influence when making prioritization decisions about technical

debt?

1

ST3

To what extent do you think that the technical debt’s negative

effects could be reduced if you did the prioritization of your

backlog differently (we are not saying how, just wondering if you
think it would be possible or not)

2

ST4
How difficult do you think it is to do the estimation of the value of
a refactoring of a technical debt issue?

2

ST5
To what extent do you consider the way you work today with the
TD management to be a reactive approach?

1

ST6
To what extent do you consider the way you work today with the

TD management to be a proactive approach?

1

ST7
To what extent do you feel that you can influence the decision

process of prioritizing the technical debt?

1 and 2

Interviews (DC2) - In the second phase of the data collection (DC2), the survey results

were complemented with semi-structured interviews to enrich the collected information

and gain a deeper understanding of how TD is prioritized within the BM process.

In total, we conducted focus interviews (as suggested by [73]) with the same 17

practitioners who had earlier participated in the previous data collection phase (DC1).

The motivation for selecting focus interviews was based on this methods suitability to

uncover factors that influence opinions, behavior, or motivation [146]. The interview

questions were developed to cover the same taxonomies as the survey and the identified

aspect of our conceptual model as presented in Fig. 1. The interview guide was defined

before and used in all interviews. Examples of the interview questions are presented in

Table III.

The interviews were conducted between November 2107 and January 2018. The

interviews were held either in Swedish or English, and each interview lasted between 90

and 120 minutes. To obtain a more accurate rendition of the interviews, all interviews

were digitally recorded and transcribed verbatim. All interviewees were asked for

recording permission before starting, and they all agreed to be recorded and to be

anonymously quoted for this paper. The interviewer also informed the interviewees that

www.manaraa.com

301

participation was voluntary and that the interviewee could cancel the interview at any

time. Before starting the interviews, the interviewer presented the objective of the study

and provided related background information about the research area.

TABLE III - INTERVIEW QUESTIONS

Prioritization

Aspect
Examples of Interview Questions

TD Management in
Backlogs

• Briefly describe how your BM works today. What kind of issues are included?

One or more backlogs? Who is doing what and when?

• The strategy for prioritization which you use today, what is the background of

it? Used for a long time? Created by whom? Changed recently (or ever)?

• Do you have a fixed amount of time in each sprint for refactoring of TD

today? Pros/Cons with this? How do you know that is enough time, do you do
any follow-up on the spent hours?

Gut Feelings
• What extent of influence has the “gut feeling” when making prioritization

decisions?

Estimation and

Quantification
• How do you estimate the value from removing TD? What does this gut feeling

consist of? Any examples?

Reactive and

Proactiveness

• Do you consider the way you work today with the TD management to be a

reactive or proactive approach?

• When you do the prioritization of TD today, how long time in advance do you

consider (meaning looking at forthcoming features)?

• Are your roadmap of future features being affected by present TD?

Prioritization

Approaches
• When prioritizing TD for refactoring, which different factors do you take into

consideration and which ones are the most important?

18.3.2.3. Analysis and Synthesis (AS1 and AS2). The analysis in this

study was conducted in two different phases.

Survey (AS1) - The data collected in the surveys during phase 2 (DC1) were analyzed

and synthesized quantitatively, i.e., by interpreting the numbers collected from the survey

answers. The techniques for analyzing and summarizing the quantitative data include

different methods, such as determining measures of central tendency (e.g., median and

mode) and measures of variability (e.g., frequencies) [257].

Interviews (AS2) - The analysis and the synthesis of the interview data collected in phase

3 (DC2) were analyzed using thematic analysis [84] to identify, analyze, and report

patterns and themes within the data.

The thematic analysis was conducted using a six-phase guide. As a first step, the audio-

recorded qualitative data collected from interviews in DC2 were transcribed, and we

familiarized ourselves with the data through careful reading of the transcripts. The second

step involved the construction of initial codes from the data, where we organized the data

into distinct groups. In this phase of the analysis, a qualitative data analysis (QDA)

software package called Atlas.ti was used. The third phase focused on identifying themes

by sorting the codes into potential themes and collating all the relevant coded data extracts

within each theme. Each extract of data was assigned to at least one theme and, in many

www.manaraa.com

302

cases, to multiple themes. For example, the citation “in that [the backlog], we also enter

internal things like refactorings and other requirements that the customer does not have,

but the product needs” was coded as “Recorded item in Backlog” in the theme “Backlog

Management.” The fourth phase focused on the revised set of candidate themes and the

fifth phase focused on identifying the essence of each theme and determining what aspect

of the data is captured by each theme. This phase also stressed the importance of not just

paraphrasing the content of the data extracts but also identifying what is interesting about

them and why. The final phase of the thematic analysis took place when we had a set of

fully developed themes; it involved the final analysis and write-up of the publication.

Fig. 3 shows a subset of the outcome of the analysis as they emerged out of the analysis

process where the mapping between different code hierarchical levels and the taxonomy

are graphically presented. The figure represented a curtailed and reduced part of the data

collection model (not completely displayed due to space limitation).

Fig. 3, Sub-set of Coding Scheme

18.4. Results and findings

This section first presents the results from the survey, and then the results from the

interviews are presented and organized according to the previously defined research

questions.

www.manaraa.com

303

18.4.1. Survey Results

In the survey, the participants were asked to rate seven sets of 6-point Likert Scale

statements (not at all, to a small extent, to some extent, to a moderate extent, to a large

extent, and to a very large extent) to indicate how they consider their current prioritization

of TD process is carried out. The ratings provided by the respondents for each of the

survey statement (see Table II) are presented in Fig. 4.

Fig. 4, Summary of the responses to the survey

The first survey result shows (ST1) that all the respondents’ BM process included

prioritization of TD to some extent, and that three (17.6%) respondents state that their

BM process includes the prioritization of TD to a large extent.

According to the survey result (ST2), the gut feeling among the respondents has a

profound impact when making decisions related to the prioritization of TD. Thirteen

respondents (76.5%) state that gut feeling influences the decision-making of

prioritizations related to TD to a large or very large extent.

A substantial part of the survey respondents considers that the amount of TD could be

reduced if the prioritization process was carried out differently. According to the result in

ST3, all twelve (70.6%) out of seventeen respondents stated that they believed that the

negative effects due to TD could be reduced (to a moderate extent, to a large extent, or a

very large extent) if they did the prioritization of TD items in their backlog differently.

Survey statement ST4 addresses the extent to which the respondents find the estimation

of the prioritization to be difficult. The estimation of the value of a refactoring of a TD

issue was considered to be quite difficult. The survey result shows that twelve (70.6%)

respondents state that they find the estimation of the value of a refactoring of a TD issue

difficult to a moderate, to a large, or a very large extent.

www.manaraa.com

304

According to the survey result for ST5, the respondents’ current TD management

approach is mostly reactive, where fourteen (82%) respondents stated that they consider

their prioritization process to be reactive to a moderate or a large extent.

On the corresponding statement ST6, assessing to what extent the current prioritization

process is considered proactive, seven respondents (41.2%) state that their approach is

proactive to a moderate or to a large extent.

Finally, the result of statement ST7 reveals that fourteen (82%) of the respondents feel

they can influence the decision process of prioritizing TD to a moderate or a large extent.

18.4.2. RQ1: How is the prioritization of TD carried out

and what factors influence the process?

Our analysis has identified many elements that describe how the prioritization process of

TD is carried out in practice. We list these elements according to the research model

presented in Fig.1.

18.4.2.1. Backlog management and the representation of TD

Deciding which activities should be prioritized and which can be postponed or ignored is

one of the most frequently discussed questions during the BM process in software

organizations.

All investigated companies used a BM approach when planning the software developing

activities. Generally, two types of backlogs were used: the product backlog as an ordered

list including everything that is known to be needed in the product and the sprint backlog

as the set of backlog items selected to be implemented in the next coming sprint.

Meanwhile, the content in the product backlog has a focus on product-level functionality

described by user stories; the sprint backlog includes a collection of tasks associated with

the user stories from the product backlog.

Typically, the sprint backlog includes a mix of different items (e.g., new features,

bugs/defects, and improvements) and is labeled accordingly. Only team B at company B

categorized their backlog items using the term technical debt. The rest of the companies

categorized TDs by labeling them as “Improvements.” Nevertheless, a significant amount

of the content of these improvements was considered by the interviewees to be TD.

However, among the different companies and teams, the strategy of whether including

TD items in the “official” main sprint backlog or putting them into an unofficial “shadow”

backlog differed. Only company B (team A) and company C (team A) included

improvement items in their ordinary sprint backlog to some extent. In these teams, only

the TD items classified as critical and urgent improvements were added to the ordinary

sprint backlog, and the rest of the TD items were managed in a shadow backlog. The

usage of shadow backlogs was also used at companies A and D, where these shadow

backlogs were commonly not managed together within the ordinary BM management

processes. This shadow backlog was described as “A shadow outside as one tries to catch

www.manaraa.com

305

up and drive aside.” This shadow backlog could be managed either on a team or team

member individual level (or both).

Several of the interviewees described the reason for using shadow backlogs as an

individual decision and a way of being able to handle TD even though the company (or

the team) did not support an official representation of TD in the backlogs.

18.4.2.2. The strategy behind the backlog management process

The result indicates that the strategy of managing refactorings of TD in backlogs includes

different aspects regarding both the way the TD items existed in the backlogs and how

the time, effort, and resources for the refactoring of them were allocated.

Commonly the teams prioritized and selected improvement items from the shadow

backlog and introduced them directly into the sprint backlog when they considered the

items to be in need of implementation or refactoring, and the team estimated that they had

available time for it. However, in some cases, the main sprint backlog was never

populated with TD items since the shadow backlog was managed on the side, totally

separated from the management of the main backlog. A participant from company B

described how they transferred TD items from the shadow backlog into the ordinary

backlog: “We also try to add [to the sprint backlog] internal things like refactoring of

technical debt and other requirements that the customer does not have, but as the product

needs.”

Interestingly, the strategy of using shadow backlogs was not described or communicated

within any of the companies’ ordinary BM process, and the background of using the

shadow backlogs was not clear to the respondents. “It is quite interesting [why we have

shadow backlogs] because we have always talked about that everything should be

included in the [official] backlog. It is very important. We have spread that message

throughout the whole organization.”

Except for company D, the companies’ BM strategy explicitly includes allocating time

and resources for refactoring activities. However, this is done in different ways. For

instance, at Companies B and C (team C2a), they have on several occasions set aside a

full or partial sprint only focusing on improvements from the backlog. At company A,

they have a BM strategy allocating 15% of the time in each sprint for improvement work

where the developers are specifically encouraged to refactor items from their shadow

backlogs. However, this strategy only allows the team to use this amount of time, meaning

that there is no obligation to spend the time; furthermore, there is no follow-up on time

spent. As one interviewee from company A stated, “This is an old estimation, not sure

where it comes from and whether it is enough time.”

Company D does not have an explicit strategy for addressing refactoring activities. Their

strategy is based on a clustering approach in which the required refactoring activities

related to or needed for a specific prioritized feature or bug are refactored.

www.manaraa.com

306

18.4.2.3. TD prioritization aspects

The companies’ shadow backlogs include several TD items which all require refactoring

activities. However, these TD items differ in terms of several factors, and these factors

need to be considered when prioritizing which item should be selected for refactoring

during the next sprint iteration and which refactoring could be postponed.

Commonly, if the TD items were minor in terms of required effort, the team members

could prioritize them directly within their teams. Meanwhile, if the TD items were

considered to be of a more severe nature, or were estimated to require significant effort,

these items were commonly discussed during specific backlog grooming meetings.

During these dedicated backlog grooming meetings, none of the companies used a

rational and defined prioritization approach to assist the decision-making when

prioritizing TD.

The companies described that this step in their BM process was strongly influenced by

“gut feelings” among the participants making the decisions. The prioritization process

was described to be heavily influenced by the different participants’ roles and their

empowerment to make decisions during these meetings. For example, one interviewee

from company A said, “I think that if we would have the same meeting tomorrow, with

the same people, we could end up prioritizing differently, the decision is highly dependent

on the discussions that occur in the room, in that specific moment.”

Another interviewee at company D described the empowerment of the decision-maker’s

experience. “In my experience, it’s usually the most experienced guy that has the biggest

impact [when prioritizing TD]. We don’t actually need a big consensus among the

participants.”

However, even if the prioritization of the TD process was described to a large extent as

being influence by meritocracy, several different aspects were mentioned as taken into

account when making these decisions, such as the criticality, the urgency, of the TD items

where the previous experience and knowledge of the professionals making these decisions

had a huge impact on the outcome of the prioritization of TD items.

Our result shows that the decisions based on gut feeling are far from being taken on an ad

hoc basis without any firm strategy. It is evident that the different companies focused on

different prioritization aspects when doing the prioritization of their TD items. Table IV

illustrates the different factors that were described as taken into consideration as a part of

the practitioners’ gut feelings when prioritizing TD.

www.manaraa.com

307

TABLE IV - PRIORITIZATION FACTORS – AS PART OF GUT FEELINGS

Current Factors Influencing the TD Prioritization

Company
Prioritization

Aspect
Examples of Argumentation

A Risk Assessment
“We want to fix issues that potentially could make us
reach a crisis point. It is also important to focus on the

potential risk of actually doing the refactoring.”

B Product or Business Needs

“When doing our prioritization, we assess "what is the

most important [TD item to refactor], either from our

[developmemnt team] point of view or a business point
of view.”

B Resource Utilization
“Things gets prioritized because of available resources.
We do not want anyone to sit and wait only.”

C Software Quality

“I focus a lot on different compromised quality ‘ilities,’

such as maintainability and flexibility during the
prioritization of technical debt.”

C Financial
“Management is always interested in ROI. Thus, if you
invest money, you should be able to get it back relatively

quickly.”

D Product or Business Needs

“We do consider future perspectives. About the urgency,

the request coming from the surroundings. So, it’s really

based on experience, on the discussion, on personal
feelings.”

Looking at the prioritization aspects in Table IV, it is apparent that there are several

different prioritization aspects among the companies, even if these aspects were not

explicitly communicated within any of the investigated companies.

18.4.2.4. Pro- and reactiveness

In general, all companies strived toward making proactive decisions during the

prioritization process, even if they indicated that, in practice, their decision commonly

was taken mostly reactively. Only company B had an overall spoken strategy from upper

management stating that all decisions related to the evolution of the software should have

a specific proactive focus, where the goal of each decision aimed at surviving in the long

term (between 10-20 years) perspective. At the rest of the companies, the prioritization

process was described as quite reactive where the TD items were first prioritized when

the consequence of them was obvious and caused a direct negative effect. For example,

one interviewee shared this, “Our prioritization decisions are not linked to any future

solution at all; you just do what you see, reactively, what you see, here and now.”

The lack of available information about future product features was commonly expressed

as a reason for being more reactive but also other reasons were mentioned by some

interviewees: “If you're proactive, you're just referred to as a cost, but if you're reactive,

you'll be seen as a guy that fixes things, so you only get the reward if you're reactive

www.manaraa.com

308

actually”. Also, the number of stakeholders and users operating the software described

having an influence on the reactiveness and the proactiveness: “Some time ago when we

didn’t have a lot of users, then I think we were more proactive in what we did. And now

when we have more users, we are more reactive in that sense.”

Although most of the interviewees described their prioritization process by not taking the

evolution of the software into consideration, a proactive approach of the prioritization

process of TD was described as a highly desired approach. One interviewee at company

C said, “You want to be proactive, but you do not often have all the data and information

available [about the future of the software], so it's often popping up things, and first then

you can act.”

18.4.3. RQ2: What Are the Challenges of Prioritization

TD?

In this section, we explore how software companies’ reason about the challenges

associated with the prioritization process of TD. In general, the prioritization process of

TD was rated high among the challenges related to the overall prioritization process.

While analyzing the identified challenges, it became clear that several of them were

related and, therefore, we have grouped them accordingly.

18.4.3.1. Predicting the future of the software

One general major concern for the interviewees was that they lacked information about

how the software was going to evolve in the future, and thus they found it difficult to

prioritize necessary and urgent TD items for refactoring. Yet another challenge related to

this area refers to the challenge of motivating the prioritization of TD without a clear

picture of the future of the software due to uncertainty. The following quote from

company C describes this challenge: “I'm always saying that, in this project, we may use

parts of this software in other projects in the future as well. But then I get questions like

"Yes, but it will never happen. Why do you say that? Why should we put this cost now

for governance, it will never happen.” No, but my gut feeling says we should do it.

However, if we had figures saying that there is a 20% chance that we will reuse part of

this software in the future, that would have helped us making those prioritization

decisions more accurate.”

18.4.3.2. Available information about the TD items

The most critical limitation for the prioritization of the TD process was expressed in terms

of the lack of available information about the TD items and its related negative

consequences, both from a current perspective but also from a future perspective. One

interviewee said, “I would like to integrate both the costs of TD and probability [of the

occurrence of the TD interest payment] and use more business decisions….Both costs

from a current status perspective but also from a future cost perspective”.

www.manaraa.com

309

Several interviewees stated that the lack of information was the missing key to

understanding the value of refactoring of TD and thereby being able to reduce the

negative consequences of TD. Having access to reliable and updated estimates and/or

quantifications of the negative effects of the present TD items was described as crucial

for being able to improve the process of prioritizing TD. However, none of the companies

had access to or were able to produce this kind of information for the identified TD items.

Neither did any of the companies use any supporting software tools to assist in the

decision-making process of prioritizing TD in their backlog.

18.4.3.3. TD refactoring competition with customer requirements

Our findings indicate that the pressure of delivering customer value and meeting delivery

deadlines forces the software teams to down-prioritize TD refactorings continuously in

favor of implementing new features rapidly.

Furthermore, our findings also indicate that this pressure depends largely on whether the

user of the software is an internal or external customer. If the user is an internal customer,

the pressure is much lower than if the user is an external customer. A lower pressure

induces TD refactorings to receive more attention and thus be more easily prioritized. The

teams at company C exemplify this situation, where the two teams have different types

of customers. As one of the team members put it, “It is the opposite situation for us in our

team [having an internal customer]. They [the other team, having an external customer]

work significantly more with a customer focus in their backlog. We have a little more

free stuff, and therefore, we can prioritize specifically technical debt issues. We don’t

suffer from such time pressure, and we can also control our documentation better, and are

more flexible, and we ourselves are also able to influence to a larger extent the decisions

that are made”.

18.5. Discussion

Through this study, we have identified several challenges software practitioners face

when prioritizing TD within their BM process. We also examined what different BM

strategies were used and what factors influence the decision-making process of

prioritizing TD.

When TD is present in the software, the only significantly effective way of reducing it is

to refactor it. However, to be refactored, the refactoring activities of the identified TD

items needs to be prioritized in competition with, for example, implementation of new

features. From a software practitioners’ point of view, the process of prioritizing TD is

surrounded by several ambiguities and difficulties.

Firstly, a starting point of our findings shows that TD items commonly are not present in

the main sprint backlog; they are often documented in quite ad-hoc managed shadow

backlogs. Even if the TD items sometimes are escalated by transition from the shadow

backlog into the main backlog, this transition is not clear in terms of when and if the TD

item should be transferred. This way of administrating TD items could potentially lead to

the TD items becoming not fully visible and known during the prioritization process, and

www.manaraa.com

310

thereby, not given sufficient attention. There is also a risk that the professionals

prioritizing the work for each sprint are not aware of the present TD items (since they are

locally managed in the teams), and therefore, these items will never be considered during

the prioritization process.

Secondly, the TD prioritization decision-making process has earlier been studied by other

researchers, but until now, not from a concrete and practical perspective. Our findings

show that when taking these prioritizations of TD decisions, the practitioners rarely base

their decisions on pre-defined procedures or guidelines. Rarely do they conduct any cost-

benefit analysis or calculate/estimate TD as an investment or calculate/estimate the

current or future interest rate in terms of maintenance costs. Neither do they carry out any

severity analysis. A possible explanation for these results may be the lack of adequate

information about the TD items to assist such activities and a lack of delegated

responsibility for providing such information coupled with upper management not

focusing strategically and explicitly on remediation of TD in the software. Quite the

contrary, our findings show that the decisions related to prioritization of TD are heavily

influenced by gut feelings and on meritocracy where the experience of the decision-

makers have a huge impact on the outcome.

Further, our findings show that the prioritization process is also highly dependent on

individual practitioners’ power to justify and argue for a certain item in the backlog to be

prioritized. This leads to polarization of the TD prioritization process because it is often

perceived as selecting one person’s opinion over another's. Further, our result indicates

that decisions related to prioritization of TD often are not backed up with validation. This

result may be explained by the fact that the companies lack sufficient guidelines and

supporting frameworks guiding the prioritization process of TD and directing the

discussion into specific areas of interest.

Thirdly, our results show that refactoring activities of TD get less attention if the software

will serve an external customer, compared to an internal customer since, in these cases,

the focus on delivering customer value is being prioritized in favor of refactoring

activities of TD. This result may be explained by the fact that management is not fully

aware of the magnitude of the consequences having TD in the software can cause, both

in terms of, for example, compromised software quality, lowered developer productivity,

increased maintenance cost, and project delays [144].

The upper section of the visualization in Fig. 5 shows contributing causes of why the

prioritization of TD is down prioritized or neglected and the lower section presents the

identified related challenges for the prioritization of TD in backlogs. This figure can assist

in developing actions that sustain the enhancement of the TD prioritization process.

The figure illustrated that there are several identified causes that potentially have an

impact on the TD prioritization process. In the future, we intend to continue with the

validation and refinement of the causes by applying them to additional industrial cases

and investigating the validity of the findings.

www.manaraa.com

311

Fig. 5. Identified Causes and Challenges Related the Prioritization Process of TD in Backlogs

18.5.1. Implications for practitioners and researchers

When looking at the process of prioritizing TD items during the BM process from a

practitioner’s perspective, we conclude with some important implications and

recommendations for practitioners and researchers, particularly useful during

prioritization of the TD in the BM process:

• To give the refactoring of TD activities adequate attention, it is crucial that the

professionals prioritizing features and improvements (e.g., TD items) in the backlog

are aware of the magnitude of the negative consequences TD brings to the software,

both from a short-and a long-term perspective.

• The use of ad hoc managed shadow backlogs leads to the need to define if and when

this TD item should be prioritized and whether shadow backlogs should be

transferred to the official sprint backlog. Otherwise, there is a risk of missing or

down-prioritizing these TD items.

• It is necessary to agree and communicate a shared vision and purpose of the product

and its features to all practitioners who are involved in prioritizing TD (both using a

shadow backlog and the official sprint backlog). With such proactive prioritization

approach, aligning the product roadmap to specific prioritization tasks will make the

decision-making more transparent and understandable.

• A guiding framework or approach in which different prioritization aspects are
included can support the grooming process of identifying TD issues that are
important to prioritize based on different goals and deliverables. The use of such a
framework or approach would also contribute to traceability enhancement.

www.manaraa.com

312

18.6. Study Limitations

It is important to consider the validity of the results in a case study [73]. The findings in

this study are subject to at least three different limitations.

First, the limited number of participating companies and the qualitative nature of the

investigation means that our findings need to be interpreted cautiously. Although the

findings cannot be generalizable to all software companies, they provide good evidence

about the identified five dimensions on which the research questions were based, and the

findings also point to areas of further research. Furthermore, we plan to expand our

sample in the future to reach a higher degree of validation of our results.

Secondly and correspondingly, the goal of collecting quantitative data using a survey was

not meant to give precise, measurable results but rather to indicate the way the

practitioners perform their prioritization of TD today.

Thirdly, the selection of the companies was based on an available convenience sample

among companies within our network that was available and had a specific interest in

participating in this study. However, the participating companies represented all software

companies from different business areas and with a software development process

including regular BM prioritization activities.

Taken together, these are all limitations that can be considered acceptable in light of the

exploratory purpose of this study. We preferred to gain a deep and rich understanding of

the context of a few cases to build a holistic first theory rather than surveying the topic

on a high level only.

18.7. Conclusion

This study set out with the aim of assessing how the prioritization of TD is carried out in

practice by practitioners in today’s software industry. The results of this investigation

show that the prioritization of TD in backlogs is commonly done in an unstructured way,

where the identified TD items are often managed in “shadow backlogs,” potentially

resulting in the TD items being overlooked during the prioritization process.

Other findings show that the process regarding which TD item to prioritize is heavily

influenced by gut feeling among the decision-makers, and whether the user of the

software is an external or internal character also influences the prioritization strategy of

TD. Several different challenges for prioritization of TD were revealed in this study,

where one of the more significant challenges refers to the difficulty of estimating the

value of each potential TD refactoring activity. Further on, even if the software

practitioners have a vision of acting proactively when prioritizing TD while the

circumstances and the organizational culture force them to act reactively upon the

prioritization tasks. Overall, the study indicates that TD needs further attention in the

overall BM process, and the findings can also assist in explaining why TD commonly is

not sufficiently visible in the official backlogs and thereby not prioritized accordingly.

www.manaraa.com

313

19. Carrot and Stick approaches when managing

Technical Debt

This chapter aims to explore how software companies encourage and reward practitioners

for actively keeping the level of technical debt down and also whether the companies use

any forcing or penalizing initiatives when managing technical debt.

When developing software, it is vitally important to keep the level of technical debt down

since it is well established from several studies that technical debt can, e.g., lower the

development productivity, decrease the developers’ morale, and compromise the overall

quality of the software. However, even if researchers and practitioners working in today's

software development industry are quite familiar with the concept of technical debt and

its related negative consequences, there has been no empirical research focusing

specifically on how software managers actively communicate and manage the need to

keep the level of technical debt as low as possible.

This study aims to explore how software companies encourage and reward practitioners

for actively keeping the level of technical debt down and also whether the companies use

any forcing or penalizing initiatives when managing technical debt.

This paper reports the results of both an online web-survey provided quantitative data

from 258 participants and follow-up interviews with 32 industrial software practitioners.

The findings show that having a TD management strategy can significantly impact the

amount of TD in the software. When surveying how commonly used different TD

management strategies are, we found that only the encouraging strategy is, to some extent,

adopted in today's’ software industry. This study also provides a model describing the

four assessed strategies by presenting its strategies and tactics, together with

recommendations on how they could be operationalized in today’s software companies.

19.1. Introduction

When developing software, it is vitally important to keep the level of technical debt (TD)

down, since it is well established from several previous studies that TD can, for example,

lower the development productivity [7], decrease the developers’ morale [187], and

compromise the overall software quality [15] and even lead to a crisis point when a huge,

costly refactoring or a replacement of the whole software needs to be undertaken [258].

The TD metaphor was first introduced by Ward Cunningham [186] to illustrate the need

to recognize the potential long-term negative effects of immature code that is sub-

This chapter has been published as:

Carrot and Stick approaches when managing Technical Debt

T. Besker, A. Martini, and J. Bosch

Third International Conference on Technical Debt, co-located with ICSE, South

Korea, 2020.

This paper was grated the Best Paper Award.

www.manaraa.com

314

optimally implemented during the software development lifecycle. This debt must be

repaid with interest in the long term [188].

Even if the concept of TD and its negative consequences are quite well known to software

engineering (SE) practitioners today, there is always a risk that TD remediation tasks gets

down-prioritized or neglected by the practitioners, since today's’ software practitioners

face increased pressure from management to reduce the development time and thereby to

reduce the costs of the development [259]. On the other hand, it is, at the same time,

important to deliver high-quality software with as little TD as possible. This balancing

act between implementing and delivering the software as fast as possible and at the same

time spending time and effort on both avoiding introducing TD in the first place and

conducting TD refactoring activities of already implemented software gets particularly

demanding. Previous studies have shown that it is quite challenging for software

practitioners to make decisions themselves on how to prioritize the time and effort they

should spend on TD remediation tasks [259].

Similar to other professionals are the software engineers’ work outcome, their attitudes,

and their work behaviors, influenced by the company's corporate culture together with

the mindset from the managers. This means that managers can have an outsized impact

on the overall software development process by adopting different management strategies

and using techniques for controlling and directing the software engineers to achieve

predetermined goals.

In recent years, the use of different strategies in behavioral interventions has become more

popular [260]. In a literature review, this study initially identifies four different strategies

that managers can adopt to impact how practitioners work with TD. Besides encouraging

employees by, for example, introducing training programs that focus on raising awareness

and enhancing knowledge about specific desired behavior, there are also other strategies

managers can implement to impact their employees [57]. In general (in several different

roles and fields), one mechanism managers use to impact practitioners’ work is an

incentive program, where a specific behavior is recognized and rewarded [261],[189].

Oppositely, managers can also use disincentive programs to penalize an undesired or

destructive behavior [208]. Further, managers can similarly implement explicitly forcing

requirements and rules, where all concerned employees must fulfill and adapt to in order

to continue their work or, for example, to deploy their implementations and continue

developing new tasks [262].

However, to the best of our knowledge, this is the first study to investigate empirically

how common and important different management strategies are when specifically

managing TD in today's software development industry. Additionally, this study also

surveys how practitioners in software companies perceive such strategies. In particular,

this study examines four research questions.

RQ1: How common is an encouraging attitude to keep the level of TD down, and do

software engineering practitioners perceive this TD management strategy as an effective

or desirable strategy?

www.manaraa.com

315

RQ2: How common are rewarding incentives to keep the level of TD down, and do

software engineering practitioners perceive this TD management strategy as an effective

or desirable strategy?

RQ3: How common is it to use a forcing mechanism to keep the level of TD down, and

do software engineering practitioners perceive this TD management strategy as an

effective or desirable strategy?

RQ4: How common are penalizing disincentives to keep the level of TD down, and do

software engineering practitioners perceive this TD management strategy as an effective

or desirable strategy?

In previous research, most of the attention to TD has focused on the usage of different

tools to manage and keep TD at bay, while none have investigated TD from the managers’

perspectives where the important context of adopting different TD managing strategies

has been in focus.

This paper reports the results of both an online survey providing quantitative data from

258 respondents and qualitative data from interviews with 32 software practitioners from

seven software companies.

The contribution of this paper is fourfold. First, we show how commonly used each of

the investigated strategies are within today's software industry. Second, we present a TD

management quadrant model that presents four different TD management strategies and

illustrates its strategies and tactics, together with recommendations on how to implement

them. Third, our result shows that a TD management strategy can significantly impact the

amount of TD in the software. Fourth, when surveying how commonly used different TD

management strategies are, we found that only the encouraging strategy is, to some extent,

adopted in today's’ software industry. Taken together, these findings provide valuable

insights into the role management has on the way practitioners address TD during their

software development work.

The rest of this paper is organized as follows. Section 2 presents the used conceptual

framework, and Section 3 introduces related work. Section 4 describes the research

methods in detail. Section 5 presents the research results. Sections 6 discusses the

findings, and Section 7 presents Implications for Future Practice. Section 8 describes

threats to the validity of the study, and Section 9 concludes the study.

19.2. Conceptual framework

As briefly described in Section 1, there are different management strategies that

organizations can use to influence employees’ working behaviors. Initially, we performed

a literature review by searching for research publications addressing different strategies

that managers can use for influencing practitioners’ working behaviors and attitudes.

Based on the outcome of this review, we have depicted a conceptual model, as presented

in Fig.1 and formulated the research questions based on this framework. The framework

illustrates four different management strategies;

www.manaraa.com

316

a)Encouraging, b) Rewarding, c) Forcing, and d) Penalizing, where each of them

connects to one of the research questions presented in Section 1. The conceptual

framework with its four main strategies is proposed under the rationale that these four

strategies potentially are important and can have an influence on the reduction of TD and

potentially are being used by managers to manage the amount of TD during the software

development work.

Figure 1: Conceptual framework

19.3. Background and related work

This section presents related work concerning incentive and disincentive programs in

today's software engineering field, followed by the different management strategies, as

illustrated in the conceptual framework in Fig. 1.

19.3.1. Incentives and disincentive programs in SE

An incentive program is a program addressing a planned activity designed to motivate

employees (individuals or teams) to achieve specified and predetermined organizational

goals or objectives within a specific time frame. Whereas a disincentive program is the

antonym of the incentive program and discourages employees (individuals or teams) from

performing specific activities [263].

Commonly, software development projects are measured using financial indicators

where, typically, the goal of the incentive program is to give bonuses to managers who

run their projects with a high margin of profit or within the budget timeframe [264]. There

is no research to date on how other software engineering roles, such as, for example,

developers, testers, and architects, are included in incentive or disincentive programs in

general and, more specifically, TD management.

www.manaraa.com

317

19.3.2. Encouraging activities

Encouraging employees is an important part of being a leader where the leader highlights

and compliments specific desired actions and where the leader also provides constructive

criticism if needed. Managers’ behaviors provide an important message to employees,

meaning, for example, that a high level of creativity and innovation result from

managerial behaviors [265] where the relationship between employees and their

managers has a significant bearing on employees' work-related attitudes and behaviors

[57]. By default, just encouraging employees does not include any direct rewards.

19.3.3. Rewarding incentive

Several studies show that reward and recognition programs can positively influence

motivation, performance, and interest within an organization [261],[189]. The overall

goal with reward and/or recognition programs is to foster teamwork, boost employee

loyalty, and ultimately facilitate the development of a wanted culture that rewards a

specific behavior [261]. The practitioners (individuals or teams) who fulfill the goals get

a predefined reward. A reward program can, for example, recognize developers who

adopt suggested techniques, and thereby the reward incentive gives a significant boost to

those who deploy best practices, where the achievement, for example, can be rewarded

by a badge [266] or by a gift card or a monetary reward.

19.3.4. Forcing mechanisms

The strategy based on forcing mechanisms refers to mandatory rules and requirements

that need to be fulfilled and follow by the practitioners in order to demonstrate adherence

to methodologies, rules, regulations, guidelines, or best practices [262]. This could be

exemplified by a situation in which mandatory rules and requirements are not met and

hence forcing the practitioners to go back and alter the software before being allowed to

continue with, for example, adding additional features or deploying the software.

Examples of commonly adopted rules and requirements from an SE perspective are not

allowing any bugs in the software and requiring that the software be fully tested before

deployment and the code fully reviewed and that it follows the coding standards.

19.3.5. Penalizing disincentive

Organizational penalty or punishment) is a pervasive phenomenon in many companies

and organizations [267] that yields penalties for an undesired behavior and are also

referred to as a disincentive strategy. Penalization refers to when managers apply a

negative consequence or the removal of a positive consequence following an employee's

undesirable behavior, intending to decrease the frequency of that behavior [208].

According to Wang and Zhang [267], some software development organizations have

adopted punishment measures in an attempt to improve software developers’

performance, reduce the software defects, and hence ensure software quality. Their result

www.manaraa.com

318

shows that while a penalty mechanism helps to reduce software defects in daily coding

activity, it fails to achieve programmers’ maximum work potential. In their study [267],

penalty rules were introduced when software developers were tracked submitting

unsuccessful submissions, which caused monetary fines for the individual developer.

Since there is a current gap in research addressing how different TD management

strategies impact how practitioners work with TD, this study built on research conducted

in other domains and examines the current state of different management strategies in the

SE field. Our work is, therefore, different from above-mentioned studies in several

aspects: We a) provide results derived from data from a real software development

environment rather than discussion without empirical evidence as support, b) we combine

both qualitative and quantitative methods, c) our study investigates four different

management strategies, and d) our investigation primarily focuses on TD.

19.4. Methodology

As visualized in Fig.2, this study used a combination of quantitative and qualitative

research approaches, and the research design was divided into six phases. The following

sections describe each phase and its related research methods.

Figure 2: Research Design

19.4.1. Phase 1 – Preparation and Design

The study was first presented and discussed during a workshop with software

practitioners from seven software companies within our industrial software network. All

companies had an extensive range of software development. The goal of this phase was

to guide how to collect information regarding the studied strategies and to select the most

suitable research model to use. The outcome of this phase is the research model shown in

Fig. 1, which directed the design, data collection, and analysis of the following phases.

This study’s selection of participating companies was carried out with a representative

convenience sample [86] of software professionals from seven of our industrial software

developing partners.

www.manaraa.com

319

19.4.2. Phase 2 – Data Collection (DS1)

The data collected in this phase was supported by an online web survey, which was

designed and hosted by the survey service SurveyMonkey.

The motivation for using a survey in this part of the study was to reach a high level of

generalizability based on a large population of software professionals and to achieve an

understanding of that population [268].

According to the guidance provided by [77], the first draft of the survey was tested by

four industrial practitioners (developer, manager, project owner, and software architect)

and by two Ph.D. candidates in order to evaluate the understanding of the questions and

the usage of common terms and expressions [77]. During this evaluation, we also

monitored the time needed to complete the survey.

The survey invitations were emailed directly to seven companies within our networks, all

located in Scandinavia, having an extensive range of software development, and

invitations were also published on software engineering-related networks on LinkedIn.

After two weeks, a reminder was sent out to those who had been specifically invited. The

surveys were anonymous, and participation in the surveys was voluntary. Across all these

collaborators, 312 respondents began the survey, and 258 respondents answered all

questions. Due to high completion rates (~83%), we decided to reject the incomplete

responses, according to the guidelines proposed by Kitchenham and Pfleeger [78].

The first part of the survey gathered descriptive statistics to summarize the backgrounds

of the respondents and their companies. These data are collected and presented in Table

I.

The respondents’ level of education was relatively high, with 58% with a master’s degree

and 25% with a bachelor’s degree. The survey included respondents having different

roles, where 49% were developers/programmers/software engineers, while 25% were

software architects. Approximately 78% of the software architects and 59% of the

developers/programmers/software engineers had more than ten years of experience. The

most common size of the software development team was 6–10 members (36%), and

most (32%) systems were, on average, 5–10 years old from their initial design.

Nevertheless, most of the software systems were embedded systems (49%) and real-time

systems (42%). However, in this specific survey question, the respondents could select

more than one option.

The second part of the survey included the four survey statements (ST) presented in Table

2, to facilitate quantitative answering the research questions presented in Section 1 (when

fully answering the RQs, we used quantitative data from this phase in combination with

qualitative data in next coming phase in section 4.4 as described in section 4.6).

For each of the statements, the respondents were asked to indicate their level of agreement

on the 6-point Likert scale; Strongly Agree, Agree, Somewhat Agree, Somewhat

Disagree, Disagree, and Strongly Disagree

www.manaraa.com

320

TABLE 1: CHARACTERISTICS OF THE SAMPLE SURVEY

Factor Percentage split

Experience < 2 years
2 - 5 year

5 - 10 year

> 10 years

3,90%
10,50%

17,40%

68,20%

Education Master’s degree

Bachelor’s degree
No Univ. education

Other:

PhD degree

57,80%

25,20%
6,20%

5,80%

5,00%

Roles Developer/Program/Software Engineer

Software Architect

Manager

Project Manager

Product Manager

Expert
Tester

*49,20%

24,80%

6,20%

6,20%

5,0%

5,0%
3,50%

Gender Male
Female

Other/no share

89,90%
8,50%

1,60%

Team size

1–5 members
6–10 members

11–20 members

21–40 members
> 40 members

23,30%
36,00%

15,90%

6,60%
18,20%

Software

system

type*

Embedded system

Real-time system

Data management system

System integration

Modeling and/or simul.
Data analysis system

Web 2.0 / SaaS system

Other

48.84%

41.86%

22.09%

20.93%

15.12%
14.73%

8.53%

8.53%

* More than one option was selectable

www.manaraa.com

321

TABLE 2: CHARACTERISTICS OF THE SAMPLE SURVEY

ID Statement RQ

ST1 Our team or I am explicitly rewarded if TD is kept down. 2

ST2 Our team or I am explicitly penalized if TD is not kept down. 4

ST3 Our team or I am explicitly forced to keep the level of TD down

(i.e., to be allowed for deployment)

3

ST4 Our team or I am explicitly encouraged if TD is kept down. 1

19.4.3. Phase 3 – Analysis and Synthesis (AS1)

The data from the survey were analyzed quantitatively, that is, by interpreting the

numbers obtained from the answers. The data were analyzed using descriptive statistics

and graphically visualized in a diverging stacked bar chart.

19.4.4. Phase 4 – Data Collection (DS2)

In this stage, the second round of data collection was conducted, where we group-

interviewed 32 software practitioners. Interviews can be divided into unstructured, semi-

structured, and fully structured interviews. As suggested in [73], this study employed the

technique of semi-structured interviews, where the questions were planned but not

necessarily asked in the same order as they were listed.

This semi-structured interview technique allowed flexibility and exploration of the

studied objects by asking follow-up questions based on the respondents’ answers in the

previous survey (as described in 4.2), meaning that these interviews were used for

obtaining detailed information about the interviewees' perceptions and interpretations of

the study topics.

All interviews were focus-group interviews based on guidelines by Krueger and Casey

[146], stating that this method is specifically suitable, serving as a source of follow-up

data to assist a prior used data collection method: “The researchers need the information

to help shed light on quantitative data already collected.”

In total, we interviewed seven companies, where each interview included between four

to seven participants. These companies all participated in the previous survey, and all the

interviewees had answered the survey before the interview. Altogether, we interviewed

32 experienced software development professionals, with roles as architects, developers,

product owners, and managers. For confidentiality, interviewees and their companies are

kept anonymous.

All interviewees were asked for recording permission before starting, and they all agreed

to be recorded and to be anonymously quoted for this paper. Each interview lasted

between 105 and 120 minutes and was digitally recorded and transcribed verbatim.

www.manaraa.com

322

Before the interviews started, the compiled results from the previous survey were

presented to the respondents (using graphical illustrations such as bar diagrams and

graphs. This presentation allowed the respondents to relate the interview questions more

easily to the results of the survey.

The interview questions were designed to a) increase the understanding of the survey

results, b) ensure that the questions in the survey were understood and interpreted as

intended and uniformly, c) confirm the results of the survey, and d) understand the

implications of the survey results. The questions were developed to cover the same

taxonomies as the previous survey to validate the findings of the survey. The validation

was performed by asking the interviewees if they agreed (or not) to the findings by

comparing the previous quantitative results with their experiences in order to understand

if the findings confirmed or contradicted each other. The interview guide was defined

before and used in all interviews. Examples of interview questions for each RQ are

presented in Table 3.

19.4.5. Phase 5 – Analysis and Synthesis (AS2)

This stage focused on analyzing the data collected in the previous Phase 4 (Section 4.4).

The analysis and the synthesis of the data were analyzed using thematic analysis [214].

First, the transcriptions from the recorded interviews were manually coded using

established guidelines in the literature [147]. The tracking of the links between the codes

and the quotations was supported by a Qualitative Data Analysis tool called Atlas.ti.

Secondly, based on the research taxonomy, a coding scheme containing four broad

categories and 19 individual codes was developed. Fig. 3 shows the outcomes of the

analysis process, where the mapping between the different hierarchical categories

(highlighted in grey) and individual codes is presented graphically (the arrows between

the entities in the figure show the relationship between the codes and the sub-codes). For

example, the citation “I think it sounds like the reward would be the best way of keeping

the measure of technical debt down” was coded as “Rewarding.”

To ensure that the coding was performed consistently and reliably, two authors of this

study synchronized the output of the codings, as suggested by Campbell et al. [85].

www.manaraa.com

323

TABLE 3: EXAMPLES OF INTERVIEW QUESTIONS

TD Management

Strategy

Examples of Interview Questions

Encouragement

(RQ1)
• How do you perceive encouragement from managers

for keeping the level of TD down?

• How could such a strategy be implemented?

• Do you agree with the results of the survey?

Rewarding
incentive

(RQ2)

• How do you perceive a rewarding incentive for

keeping the level of TD down?

• Do you have this or a similar strategy in place or

planned for the future?

• How could such a strategy be implemented?

Forcing

(RQ3)
• How do you perceive a forcing mechanism for keeping

the level of TD down?

• Do you have this or a similar strategy in place or

planned for the future?

Penalizing
disincentive

(RQ4)

• How do you perceive a penalizing disincentive for

keeping the level of TD down?

• How could such a strategy be implemented?

• Does your company have a team and/or personal

incentive/disincentive systems for any other kind of

quality criteria related to your software development

process?

Other • Which strategy of keeping the TD down, do you

consider to be the most/least successful (and why) and

under what circumstances?

19.4.6. Phase 6 – Combined Analysis and Synthesis (AS3)

In the sixth phase of the study, we combined the results we received in the previous

quantitative and qualitative data collection and analysis stages. When interpreting the

results from a mixed-methods research approach, there are different designs to facilitate

providing a stronger interpretation and greater insight from the results.

This study has used the convergent parallel mixed-methods design when collecting both

qualitative and quantitative data, analyzed them separately, and compared the results to

understand whether the findings confirmed or contradicted each other [66]. The goal of

using this approach was to strengthen, and thus confirm our findings after the results had

been generated from the data [170].

www.manaraa.com

324

Figure 3: Coding Scheme

19.5. Results and findings

In the survey, the participants were asked to rate their agreement with four statements

(ST1-ST4) using a 6-point Likert Scale. The ratings provided by the respondents for each

of the survey statements (as presented in Table 2) are presented in Fig. 4, and further

described in the following subsections.

Figure 4: Summary of the responses to the survey

www.manaraa.com

325

19.5.1. Encouraging strategy

The aim of the first research question (RQ1) is to investigate how common an

encouraging strategy is to keep the level of TD down and how software engineering

practitioners perceive this TD management strategy.

19.5.1.1. Survey results.

When looking at the results from the different statements in Fig. 4, it is evident that one

of the statements excels compared to the other statements.

What stands out in the figure is the statement assessing whether the respondents are

encouraged to keep the level of TD down (ST4), where 60.3% of the respondents agree

to some extent of being encouraged, and 39.7% disagree to some extent of being

encouraged to keep the level of TD down.

A remarkable result of this statement is that 11.9% of the respondents strongly disagree

with being encouraged to keep the level of TD down.

19.5.1.2. Effective or desirable strategies.

The attitudes among the practitioners toward introducing TD or conductin TD

remediation tasks were described as being guided and targeted by the mindset and the

attitudes from the management side where recognition of leaders and peers were

important components. This meant that when management was focusing its attention on

the importance of TD, the employee was encouraged to focus his or her work in the same

direction.

All the interviewees considered an encouraging managing strategy of TD as highly

effective and impactful, and several of them described that this strategy clearly could be

more emphasized within their organizations and thereby also have a more significant

impact on the amount of TD in their software.

19.5.1.3. Tactics for encouragement.

Several actions were identified as examples of encouraging activities from management

to keep the level of TD down. Several of the interviewed companies strived to

continuously raise awareness about the concept of TD and its related negative

consequences as an encouragement to keep the level of TD down. Some companies ran

satisfyingly dedicated educational sessions to explicitly address how to avoid the

introduction of TD in the first place. One interviewed software architect said, “We [the

architectural team] try to help some teams here that we are close to, and we try to teach

them how to write good APIs.” Yet another interviewee from another company echoed

this view, “I think of education. I think a lot of debt is introduced because of a lack of

knowledge.”

The managers for some teams in one of the interviewed companies had set aside a specific

amount of working time within each sprint to allow explicitly (without imposing on the

www.manaraa.com

326

developers) spending time on TD remediation activities together with other software-

improving activities. This dedicated time slot encouraged the involved engineers (such as

testers, developers, and architects) to focus on TD issues in every sprint as an incorporated

part of their overall working process.

19.5.2. Rewarding Incentives

The second research question (RQ2) addresses how common rewarding incentives are to

keep the level of TD down and how software engineering practitioners perceive this TD

management strategy.

19.5.2.1. Survey results.

As illustrated in the first statement (ST1) in Fig. 4, only 14.3% of the respondents agree

to some extent with being explicitly rewarded when keeping the level of TD down, and

thus 87.7% of the respondents state that they are not explicitly rewarded for it. What

stands out in this data is that only two (2) respondents state that they strongly agree with

being rewarded when keeping the level of TD down; meanwhile, a hundred (100)

respondents state that they strongly disagree with being explicitly rewarded if they keep

the level of TD down.

19.5.2.2. Effective or desirable strategies.

None of the interviewed companies had an incentive program where employees were

rewarded for any (not only TD specifically) explicit behavior. The thoughts among the

interviewees differed as to whether adopting rewarding incentives is an effective or

desirable strategy to keep the level of TD down.

Some interviewees were skeptical of explicitly highlighting and rewarding specific

working activities and behaviors such as TD remediations since they thought keeping the

level of TD down should be an activity that comes with the craftsmanship of software

development and the working pride of software engineers. For example, one interviewee

said, “It sends the wrong signals if you start to reward or penalize individuals or teams

for something that should be a normal part of their daily work. Because I see that paying

off technical debt should be done as a part of your daily work to the extent that is

possible”.

On the other side, several other interviewees argued that a TD managing strategy based

on rewards could be effective since rewards can motivate practitioners to manage TD

further. One such interviewee said, “I guess it is a good way. If you have this kind of

reward now and then, you keep up the awareness that this is important. It is something of

a signal from the organization.”

www.manaraa.com

327

19.5.2.3. Tactics for rewards.

Concerns regarding the different appropriate types of rewards were widespread. Some

proposed (since none of them hade any incentive programs in place) rewards such as

monetary compensation, extra holidays, and pizzas to the teams. Meanwhile, other

interviewees said a reward does not have to be tangible; it could be a simple

acknowledgment since official praise and thus an enhanced reputation are considered

equally important: “A reward does not have to be money. You get some reputation that

will actually be enough reward in itself.”

Nevertheless, even if a rewarding incentive has the best intention to decrease the amount

of TD in the software, such initiatives could easily be misused by causing a

counterproductive backlash where, for example, practitioners primarily focusing on TD

remediation tasks in order to get the rewards or focusing only on the TD items that are

easy to refactor, and thereby focusing less on other tasks and goals, which can have a

negative impact on the overall implementation or delivery of the software. As one

interviewee put it, “How do you make sure that you don’t end up having a person that’s

just fixing technical debt [in order to get the reward].”

Yet another concern that was expressed by several interviewees refers to the possibility

of manipulating such reward systems by first introducing a large amount of TD and, after

that, refactor it in order to get the reward. “Well, the problem is that it’s very easy to game

it. I could introduce a large technical debt item and then refactor it [to get the reward].”

Further, an incentive program rewarding the reduction of TD after the TD has first been

identified, suppose that in order to get the reward, the reduction of TD must initially be

identified and tracked. This suggests that even if the TD is recognized before the manager

has identified it, the practitioners could postpone refactoring the TD to get the reward. As

one interviewee said, “If you see the debt going up, and you fix it directly, you don’t get

any reward. I mean, it’s easy to cheat.”

Taken together, if an incentive program for TD remediation should be introduced, it is

important that such a program be carefully designed to avoid counterproductive results

that instead generate even more TD; and it is important to design it in an impartial way

that is not easy to manipulate.

19.5.3. Forcing mechanisms

The third research question (RQ3) aims to assess the forcing mechanism to keep the level

of TD down and how software engineering practitioners perceive this TD management

strategy.

19.5.3.1. Survey results.

When assessing whether the respondents are being forced to keep the level of TD down,

the result from the second statement (ST3) in Fig. 4 shows that 15.6% of the respondents

agree to some extent with this statement and that 84.4% of the respondents disagree to

some extent with being forced to keep the level of TD down.

www.manaraa.com

328

19.5.3.2. Effective or desirable strategies.

None of the interviewed companies had any forcing rules or requirements related to the

management of TD. Notably, all the companies had other forcing rules related to their

software development process such as, for example, following code standards (by, e.g.,

code reviews), documentation requirements, and performing tests. These rules applied

primarily to specified mandatory activities and requirements that had to be fulfilled for

the delivery to be viewed as complete and further activities to take place.

Even if the TD and its negative effects are known to the software engineers, it can be

difficult to get the time and budget from the management side for refactoring the software.

Here, a positive side to a forcing TD management strategy was described in terms of

empowerment since such a strategy would give authority to the practitioners to conduct

mandatory TD remediation tasks without having to argue and motivate the action to the

managers. For example, one interviewee said, “I think the motivation is very high to take

care of all technical debt, but we don’t have the funding to do it. It’s no problem

motivating the software engineers to fix it, they really want to do it, but we don’t have

the funding most of the time. I would like the forcing part stating that you actually need

to fix this.” Yet another finding was that the forcing of TD remediation activities seams

to become more vital for companies adopting shared ownership of their software product

portfolio, where several teams collaborate on the same software without having strict

ownership of the components. Even if the different teams had guidelines which, to some

extent, addressed the management of TD, there was no uniformity among the teams

regarding how they managed TD since the used guidelines were based only on

recommendations without any direct obligations or forcing mechanisms. For example,

one interviewee said, “Since we have shared ownership of the code, then we need to have

a certain set of common rules to follow to have a good look and feel of the code

independent of which team that was in there last. And these rules need to be forced by

someone.”

No direct negative effects of having forcing rules or requirement related TD were

identified in the study. However, several concerns about how such TD managing forcing

rules should be designed and implemented was raised by the software practitioners. For

example, when adopting a forcing strategy, it is vitally important to define which rules

and measurements and responsibilities should be applied by whom together with

guidelines addressing how these goals can be achieved. For example, one interviewee

said, “You need good rules that people understand, and they need to understand what they

shall do.” This view was echoed by another interviewee who stated, “But without

measurements, you don’t have anything to go on. And if everybody is aware of they are

being measured, then they will not mess up”.

19.5.3.3. Tactics for implementing a forcing strategy.

Another view on the enforcement of TD activities was described as a transition from an

encouraging strategy to a forcing strategy.

It was recommended by several interviewees that a company first should focus on

encouraging initiatives, and if such a strategy were conceived as not enough, this forcing

www.manaraa.com

329

strategy could be implemented. To directly implement a forcing strategy was not

recommended by the interviewed companies. One company described their history going

from an encouraging strategy to adopting a forcing strategy (however, this was not forcing

of TD management): “It depends on the scale on the organization. A couple of years ago,

we didn’t force that much. We were encouraged, and that was because we had some sort

of thought of ownership, and I would say product pride in our product, and that was our

sort of encouragement. It was your baby, and you wanted to be proud of it, and that’s

driving bits.”

19.5.4. Penalizing Disincentives

The fourth research question (RQ4) set out to investigate how common penalizing

disincentives are to keep the level of TD down and how software engineering practitioners

perceive this TD management strategy.

19.5.4.1. Survey results.

Looking at the third statement (ST2) in Fig. 4, it is apparent that 17.5% of the respondents

agree to some extent with being explicitly penalized when not keeping the level of TD

down, and thus 82.5% of the respondents state that they are not penalized if they don’t.

19.5.4.2. Effective or desirable strategies.

Even if the survey showed that respondents are being penalized (individually or team-

wise), none of the interviewees in the study were familiar with any penalizing activities

within their companies, causing, for example, monetary fines and salary reductions. All

of the interviewees had direct negative attitudes toward implementing a TD management

strategy based on penalizing practitioners or teams who do not succeed in keeping the

level of TD down. Commenting on penalization strategies, one of the interviewees said,

“No, I don’t like, for example, lowered salary because we don’t meet the expectations.”

19.5.4.3. Tactics for penalizations.

Several different concerns were raised about a penalizing strategy for managing TD.

Initially, to be able to penalize an undesired behavior where, for example, TD is

introduced (deliberate or un deliberate) or when identified TD are not refactored in a

wanted way or within a specified period, there must be clear rules for the software

practitioners to follow. These rules can potentially be the same type of rules as the rules

formulated in the forcing strategy, but they can also be of a different character.

However, there are several different issues to take into consideration if a penalizing

strategy should be implemented to facilitate the management of TD. Several interviewees

raised the importance of establishing fair, adequate, and succinct rules that should be

clearly conveyed, understood, and followed by all the concerned employees.

www.manaraa.com

330

Initially, there must be a general understanding and definition of TD among all concerned

employees. An interviewee addressing this issue said, “For penalizing, then people are

going to sweep it under the carpet and say, “Oh, I don’t know about any technical debt’.”

Further, there also needs to be someone to be accountable for defining the rules and

someone who should be responsible for tracking, identifying, and penalizing the

individual employee or the team. The justice of the rules must also be addressed

appropriately, meaning that there must be clear rules on “whom” to penalize. One

example to illustrate this can be when a project manager orders a developer to introduce

TD intentionally due to time restriction. The penalizing rules must be clear on whom to

penalize in such a situation: the person who orders the introduction of TD or, for example,

the developer who actually implements the suboptimal solution. One of the interviewed

developers highlighted such a scenario by describing that TD sometimes has to be

intentionally introduced because of a requirement coming from outside the one’s team:

“The penalizing part, it’s often just like it’s not in your control if you want to keep the

debt down fully, and some of this is probably your fault, but often it’s something from

outside your team that’s saying: ‘No, you have to do this now [introduce the TD

delibertely].’”

19.6. Discussion and limitations

Since no research to date was found in the SE research field on the question of how

different TD management strategies can be applied to keep the level of TD down, this

research provides novel results.

In total, four main strategies were identified in the initial literature research, which was

particularly interesting when portraying how software managers can influence and impact

the software engineers’ attitudes and working behaviors with TD.

As illustrated in Fig. 5, we propose a model describing the different identified and

investigated TD management strategies. The model spans four quadrants and is named

“The Four TD Management Quadrants,” which outlines that TD managing strategies can

be either of an incentive/disincentive character having a focus on either a desired or

undesired behavior.

This model offers an exploration of different TD management strategies, with its different

strategies and tactics, and it also describes both how the strategies relate to each other and

how they differ. This model can assist managers when making decisions on which

strategy to adopt and also support transition plans, shifting from one strategy to another.

Among the different studied strategies, the result shows that today's software companies

most commonly use a TD management strategy based on the encouragement of

employees, where 60% of the respondents in the survey state that they are, to some extent,

encouraged to keep the level of TD down. Meanwhile, the other investigated strategies,

such as using a strategy based on forcing mechanisms or the adoption of incentive or

disincentive programs, were rarely used by the companies.

Further, among the investigated companies, there was a strong belief that both the

encouraging and the reward TD management strategy would be valuable to decrease

www.manaraa.com

331

further the amount of TD in the software; meanwhile, the forcing and penalizing strategies

were not considered as desired and constructive strategies.

One motivating finding is that practitioners conceive that the attitudes and mindset toward

TD remediation tasks from their managers have a significant impact on the way they

address TD. Further, and perhaps the most striking results in this study are that a TD

managing strategy based on encouragement has a significant impact on the way

practitioners work with TD.

Though, since the result shows that still quite a lot of the respondents to some extent do

not agree with being encouraged (40%) to focus their effort on TD remediation tasks, this

result shows that there is an unfulfilled potential for managers to impact how practitioners

can reduce TD by adopting a TD management strategy based on encouragement and

without having to introduce forcing mechanisms or strategies based on rewards or

penalizations.

 Figure 5: The Four TD Management Quadrants Model

19.7. Implications for future practice

Based on the findings in this study, we summarize the following five recommendations

for how different TD management strategies could be operationalized in software

developing companies:

Recommendation 1: Having an explicit TD management strategy can impact the amount

of TD in the software significantly. However, when proposing and implementing such a

strategy, managers should consult with concerned stakeholders to understand which

strategy is most effective and appropriate for use.

Recommendation 2: A TD management strategy based on encouraging the software

engineers to keep the level of TD down is a good starting point that must not require much

effort from a management perspective. Such an encouraging strategy should be based on

www.manaraa.com

332

a leadership empowering participation in TD remediation activities where the goal of the

strategy should be inspiring and having a clarity of purpose, value, and direction.

Initially, the managers can recognize and encourage the desired way of addressing TD in

the software, which will reinforce the employee’s understanding of what is expected.

Other encouraging activities can be to provide education about TD and thereby to raise

awareness about its importance and its negative consequences.

Recommendation 3: When introducing a rewarding strategy, it is recommended to

design it carefully to ensure justice. It is also recommended to consider incentives of both

non-financial and tangible rewards initially and, thereafter, evaluate the outcome of the

two different reward strategies to make sure the effect will not be counterproductive to

other goals.

Recommendation 4: Specifically, companies adopting shared ownership of their

software product portfolio and already having explicit forcing rules or requirements for

the development process, it is also recommended to integrate rules that address TD.

However, these forcing rules should be well designed together with guidelines and

examples demonstrating how the goals can be achieved.

Recommendation 5: It is advised to start implementing a TD management strategy and,

thereafter, evaluate the strengths and weaknesses of the chosen strategy. We also

recommend companies to use “The Four TD Management Quadrants” model to assist

when making decisions related to transitions from one strategy to another.

19.8. Threats to validity

Several important threats to validity necessitate a cautious interpretation of the results of

the present study. We have chosen a classification scheme in order to distinguish between

different aspects of validity and threats to validity provided by Runesson and Höst [73].

This scheme includes four aspects of validity: construct validity, internal validity,

external validity, and reliability.

Construct validity reflects the extent to which the operational measures that are studied

represent what the researchers have in mind and what is investigated according to the

stated research questions [73]. In a survey, this is commonly one of the main threats to

validity, as the respondents might interpret the survey questions and other terms

differently. To mitigate this threat, we provided the respondents with the following

description of TD before answering the questions: “Technical Debt is a metaphor that

describes a real-life phenomenon, and it provides a way of talking and reasoning about

difficulties related to software development and software maintenance. Below is a brief

description of what Technical Debt is: Technical Debt (TD) is usually described as the

non-optimal code or other artifacts related to software development that gives a short-

term benefit but causes a long-term extra cost during the software life-cycle.” Further,

this study could possibly suffer from internal validity by affecting our ability to explain

the phenomena that we observed [21] accurately. However, to mitigate this threat, we

triangulated the findings from the survey by conducting follow-up interviews validating

the derived results. Additionally, to minimize the threat of the respondents

www.manaraa.com

333

misunderstanding the different strategies in the survey, we initially conducted a pilot

study with an industry practitioner, and the understanding of the terms was also addressed

during the follow-up interviews. External validity focuses on the extent to which it is

possible to generalize the findings. There is always a risk in surveys that the sample is

biased, and for this topic, a potential threat refers to the demographic and cultural

distribution of response samples. As reported in Section 4.2, we mainly investigated

companies from the Scandinavian area, which can have a cultural impact on respondents’

experiences and views on penalizing, rewarding, forcing, and encouraging actions from

management. The results could, therefore, potentially be different in other cultural or

geographical areas. Thus, further work is needed to replicate the results in other

geographical areas and other software development cultures. However, to mitigate this

validity issue, we attempted to enlarge the respondents’ sample by inviting additional

participants globally via LinkedIn. Without replicating this study to other countries, it is

not possible to confirm that this study is fully generalizable. Reliability addresses whether

a study would yield the same results if other researchers replicated it. In this sense,

triangulation is important [73], and to mitigate this threat, we have employed source

triangulation (several companies and several professional roles), methodological

triangulation (quantitative analysis based on survey and qualitative analysis based on

interviews), and observer triangulation (all authors participated in the analysis). With

regard to the recommendations, some limitations need to be acknowledged. Since only

the encouraging strategy was to some extent adopted by the interviewees, the

recommendations are based on both the interviewees' experience with strategies focusing

on issues other than TD and on their opinions on the different strategies.

19.9. Conclusion

This study set out to investigate empirically how common different management

strategies are when managing TD and to investigate how software practitioners perceive

such TD management strategies. More specifically, we study how software management

influences the way software practitioners work with TD, for example, by continuously

encouraging and rewarding those who focus on TD remediation and limitation activities.

Yet another TD management strategy we examine in this study is based on penalizations

and forcing mechanisms. The results show that software practitioners are not commonly

rewarded, penalized, or forced to keep the level of TD down. However, 60% of the

respondents state that they are, to some extent, encouraged to keep the level of TD down.

Further, the result shows that a TD management strategy based on encouraging activities

is described as having a significant impact on software engineers' attitudes and behaviors

when addressing TD. Since about 40% of the survey respondents state that they are not

directly encouraged from managers to keep the level of TD down, this indicates that there

is considerable unfulfilled potential to influence how software practitioners further can

limit and reduce TD by adoption of a TD management strategy based on encouraging

activities where, for example, the concept of TD is acknowledged and recognized more

broadly. Finally, this study also contributes to a TD management quadrant model

describing four different TD management strategies and its tactics together with

recommendations on how to implement such strategies in practice.

www.manaraa.com

334

www.manaraa.com

335

20. Answering the Thesis’ Research Questions

This chapter summarizes the main findings with respect to the stated research questions

in this thesis (presented in chapter 4).

20.1. RQ1 – Consequences of TD in today's software industry

The first main research question in this thesis sought to empirically study and understand

in what way and to what extent TD influences today’s software development work,

specifically with the intention of providing more quantitative insights into the field. More

specifically, we explore the negative effects of TD from four different perspectives, using

four sub-questions.

Taken together, the findings show that TD can have a significant negative impact on

several different areas within the software development field. In today's competitive

environment, software development speed is often an important factor, and companies

strive both to reduce development time, shorten the time to market, and increase

productivity. However, our results show that software suffering from TD has a significant

negative impact on the developer productivity and the results also show that TD causes

negative consequences on several different quality attributes which left unchecked can

stifle a company’s ability to innovate and grow by limiting the resources that are available

to implement new features or new software. Further, the developers working with

software suffering from TD are also negatively affected, and our results indicate that TD

has an influence on developer morale. When comparing different types of TD, our results

show that ATD was the most frequently encountered type of TD and also that ATD

generates the most negative impact on daily software development work.

Collectively, the results suggest that software companies need to understand the burning

issues of TD and that TD can affect the future of their software and their investments. It

is important that companies recognize the potential long term and far-reaching negative

effects of TD and deliberately avoid introducing TD in the first place.

20.1.1. RQ1.1 – What is the negative impact of architectural TD?

In the study in Paper A (chapter 9), we found that the negative impact of ATD can lead

to severe and costly maintenance overheads that, in the long run, can diminish an

organization’s ability to innovate and evolve. ATD can also result in restricted flexibility,

decreased reliability, and performance degradation.

Paper D (chapter 12) investigates the impact of ATD on daily software development

work, and we found that ATD has a significant negative impact on software practitioners’

daily work. Our result shows that practitioners experience that ATD has the highest

negative impact on daily software development work. Moreover, we provide evidence

that does not support the commonly held belief that ATD increases with the age of

software. We show that despite different responsibilities and working tasks of software

professionals, ATD negatively affects all roles without any significant difference between

roles.

www.manaraa.com

336

Further, the results indicated a linear correlation between the level of the negative effect

of complex architectural design and how often the respondents encounter a limited ability

to add new features. These findings confirm that it is important to pay extra attention to

the architectural design of the software, in order for the software to be able to grow in the

future.

20.1.2. RQ1.2 – What is the negative impact on software quality due to

TD?

Software companies need to produce high-quality software and support continuous and

fast delivery of customer value both in the short and long term. However, this can be

hindered by compromised software quality attributes that have an important influence on

the overall software development lifecycle.

The result in paper B (chapter 10) shows that practitioners identified a negative impact

on software quality due to TD, where maintenance difficulties, a limited ability to add

new features, restricted reusability, poor reliability, and performance degradation issues

are the quality issues that have the most negative effect on the software development

lifecycle. Further, when examining how frequently software practitioners encountered

these compromised quality attributes due to experiencing TD, the results show that

maintenance difficulties are most frequently encountered by the respondents.

Moreover, there is a general view that quality issues increase over time during the

software lifecycle. However, our findings do not support such view, meaning that our

result did not show any statistically evidence that the negative effects of TD increase with

the age of the software. Contrary, our result showed that all of the investigated quality

issues are frequently encountered even for systems with age less than two years. This

finding shows that the payment of interest is early introduced and persist during the whole

software lifecycle. Taken together, these findings provide strong empirical confirmation

that software companies need to manage TD and reverse TD early in the lifecycle or

potentially face quality issues in the future.

20.1.3. RQ1.3 – What is the negative impact on development productivity

due to TD?

Software systems suffering from TD cause an extensive amount of wasted working time

since practitioners are forced to perform additional activities, which would not be

necessary if the TD was not present (such as e.g. performing additional testing, source

code analysis, and refactoring). In this thesis, we have used this amount of wastage as a

proxy for productivity, and our findings show that TD causes an extensive amount of

waste of working time for the concerned practitioners and thereby having a negative

impact on the productivity. The findings in paper C (chapter 11) show that, on average,

36% of all development time is estimated to be wasted due to TD and that all investigated

software roles (several different roles) are heavily affected by the interest of TD. Further,

when specifically studying productivity using data from developers reporting wastage of

www.manaraa.com

337

time due to TD in paper E (chapter 13), the result shows that, on average, 23% of their

time is wasted.

Taken together, the findings suggest strong recommendations for software companies to

focus further on continuously undertaking refactoring initiatives of TD to keep the

amount of TD at bay on an ongoing basis and thereby also potentially increase the overall

developer productivity.

20.1.4. RQ1.4 – What is the negative impact on developers’ morale due to

TD?

TD has a negative impact on developers’ morale. Our results in paper F (chapter 14)

indicate that the occurrence of TD reduces developers’ morale since the presence of TD

hinders the developers’ progress and reduces their confidence. Further, our results imply

that proper management of TD increases developers’ morale since it enables the

developers to perform their tasks better and to improve software quality in the future. The

results also suggest that proper TD management leads to a virtuous cycle where the right

culture and TD prevention mechanisms reinforce each other, leading to less waste of time,

followed by a continuous increase in the developers’ morale and productivity.

To conclude, these findings show that developers consider TD and its management as

important factors influencing their working progress and future development activities,

and this result encourages software companies to also consider the human and

organizational consequences of TD more seriously.

20.2. RQ2 – Initiatives to reduce the negative effects of TD in today's

software industry

The second main research question in this thesis set out with the aim of understanding

which different initiatives can reduce the negative effects of TD and also which factors

are important to consider when implementing such initiatives in the software industry.

Taken together, the findings show that there are different initiatives that can be

undertaken in order to reduce the negative consequences of TD. First, software

practitioners need to understand the negative consequences of TD and, thereafter, identify

and further strengthen initiatives with the intension of reducing or avoiding TD.

The findings indicate that software companies need to be armed with strategies and

proactive management in order to reduce the negative effect of TD. The development

of such strategies could include the process of tracking and prioritizing TD using a

systematic approach and the usage of supporting guidelines or standards. Further, having

a TD management strategy based on “encouragement” can significantly impact the

amount of TD in the software, since our findings show that practitioners conceive that the

attitudes and mindset toward TD remediation tasks from their managers have a significant

impact on the way they address TD.

www.manaraa.com

338

20.2.1. RQ2.1 – What impact do TD prevention initiatives have on

software development?

Since TD has a significant negative impact on software development, our results show

that it is important to actively prevent introducing TD in the software in the first place.

Our results show for instance, that there is a correlation between the amount of TD and

productivity (paper C and paper E), which infers that if the introduction of TD can be

prevented in the first place, software productivity may increase. Further, our results in

paper E (chapter 13), also show that developers are frequently forced to introduce new

TD, due to already implemented TD, meaning that preventing the introduction of TD in

the first place will also decrease the later introduction of additional TD.

Further, the result in paper I (chapter 17), show that, e.g., adopting regulations and

guidelines such as the ones used in the safety-critical software domain, strengthen the

implementation of both source code and architecture and thereby initially limit the

introduction of TD. Moreover, since we also in paper F (chapter 14) found a correlation

between the amount of TD and the developer morale, this also stresses the importance of

keeping the level of TD down early and throughout the whole software lifecycle.

20.2.2. RQ2.2 – What impact do TD remediation initiatives have on

software development?

Several of the studies in this thesis highlight the importance of iteratively and

continuously conduct TD refactoring activities. Our result shows for instance that there

is a correlation between TD and productivity (paper C and paper E), which infers that if

TD is remediated, the developing productivity may increase.

The findings in paper F (chapter 14) show that conducting TD remediation and refactoring

tasks are considered as motivating activities for developers, as they enable them to

increase the quality of software artifacts, which made them feel confident about their

products.

However, conducting TD refactoring tasks in order to reduce the negative consequences

TD causes, may sound easy and obvious to prioritize and perform, but it can often be

quite challenging, and the type of software may also have an impact on the possibility to

perform TD remediation activities. For instance, the findings in paper J (chapter 18),

indicate that the pressure of delivering customer value and meeting delivery deadlines

forces the software teams to down-prioritize TD refactorings continuously, in favor of

implementing new features rapidly. Further, we also found that, e.g., safety-critical

regulations may constrain the possibility of performing TD refactoring activities (paper

I), and when studying the impact of introducing incentive programs in paper K (chapter

19) for, e.g., encouraging or rewarding TD remediation activities, our results show that

such a program must be carefully designed to avoid counterproductive results that instead

generate even more TD.

www.manaraa.com

339

20.2.3. RQ2.3 – What impact do TD tracking initiatives have on software

development?

When TD is present in the software, the only significantly effective way of reducing it is

to refactor it. However, before the refactoring can take place, first the TD items need to

be tracked and prioritized.

Our results show that TD tracking initiatives have an impact on software development,

where it serves to, e.g., monitor TD and its interest over time. However, according to the

results in paper G (chapter 15), on average, only 26% of software practitioners use tools

to track TD, and only 7.2% of them created a systematic process for doing so. In addition,

the results in paper J (chapter 18) also show that even if the used backlogs in today's

industry includes TD items to some extent, to support the prioritization process and assist

in cost and benefit analyses, etc., it is common that the identified TD items often are

managed in so-called “shadow backlogs.” The results further indicate that the TD items

not being tracked or being managed in “shadow backlogs,” potentially may result in the

TD items being overlooked during the prioritization process, with the result that the TD

items will remain in the software.

Further, to assist the tracking of the TD process for practitioners, we propose a Strategic

Adoption Model (SAMTTD) based both on the evidence collected across our studies and

in combination with current literature. The model can be used by practitioners to assess

their TD tracking process and to plan the next steps to improve their tracking processes.

20.3. RQ3 – Factors affecting TD management in context-specific

domains

The third main research question in this thesis sought to study TD in two different

domains, a software startup company domain, and a safety-critical software domain. The

motivation for studying TD in a software startup context is based on the fact that these

types of companies commonly operate under high uncertainty and that their development

process commonly is less strict compared to more mature software development

companies and thereby potentially alter or expand on the general view of TD.

On the contrary, companies developing software for the SCS domain have commonly

both a strict and mature software development process they must adhere to. Taken

together, our results indicate that these different types of companies address and manage

TD differently, and this illuminates that management strategies of TD also may take into

account the context the software companies operate within.

20.3.1. RQ3.1 – What are the challenges and benefits of deliberately

introducing TD for software startups?

There are both challenges and benefits of deliberately introducing TD for software

startups. The research presented in paper H (chapter 16), has been able to identify several

benefits of deliberately introducing TD in a software startup context, such as, e.g., the

ability to cut development time, and thereby enable fast feedback from customers and

www.manaraa.com

340

increase revenue. Another benefit is the preservation of startup capital since startup

companies typically have less money in the early stages. Intentional TD also allows

startups to remain flexible. When they do not spend large amounts of money or time

developing new features, they are more willing to discard them and alter the product

significantly as and when needed. Thus, TD allows them to make more objective

decisions. However, despite the benefits of intentional TD, we also identified challenges,

since introduced TD would eventually need to be fixed, and not addressing the TD issues

can cause product failure or business disruption. Another challenge of deliberately

introduce TD is the increased risk, the potential productivity loss, and the reduced

scalability it often introduces.

20.3.2. RQ3.2 – What impact can regulatory requirements have on TD

management in a safety-critical software context?

Regulatory requirements have an impact on TD management in a safety-critical software

(SCS) context, from several different perspectives.

The results in paper I (chapter 17) show, for example, that performing TD refactoring

tasks in safety-critical software requires several additional activities and costs, compared

to non-safety-critical software, and thereby risk being postponed or ignored. The safety

critical regulatory requirements in SCS can also force software companies to perform

suboptimal work-around solutions that are counterproductive to achieving a high-quality

software since the regulations constrain the possibility of performing optimal TD

refactoring activities. Since the refactoring of TD in these types of software systems

requires both extra activities and costs, it is of vital importance to implement these

solutions as optimally as possible from the very beginning.

www.manaraa.com

341

21. Future Research

The studies included in this thesis contain suggestions for future work. However, based

on the synthesis of the results from this thesis’ studies, several different opportunities for

future research in new areas and domains are suggested.

As illustrated in Figure 1, two main TD tracks of future research are outlined, where the

first track focuses on TD in Machine Learning (ML) applications and the second track

focuses on Process Debt.

Figure 1: Possible directions for future research.

21.1. Technical Debt in Machine Learning applications

There has been substantial research undertaken on the role of investigating TD in

traditional software development, but very few studies have empirically studied the TD

concept within artificial intelligence (AI) and ML applications.

The development of AI-based software applications based on ML algorithms is today

increasing at a rapid rate. In comparison with traditional software systems, all ML

algorithms feed on large pools of data, where the data is the prime constituent of the AI

application's success. The data sets used in the ML algorithms need to be of exceptionally

high quality, as even minor issues can have a negative impact on the output from the very

beginning. This means that any AI application using ML algorithms will only be as good

as the quality of the data used in the pipeline. However, since the data pipeline is

commonly continually changing to accommodate additional data sources, the data

ingestion rate is often unpredictable, and the quality of the data frequently requires

auditing and cleaning. More profound insights into how TD arise in ML applications,

together with its negative consequences in such applications, would be beneficial for the

software engineering field.

www.manaraa.com

342

21.2. Process Debt

The software development process is crucially important when developing software. Very

few studies today address TD in relation to the implemented software development

process both in terms of the design of the process and also how the process is carried out

in practice. Since this process has a significant impact on the software product being

developed [269], this type of debt has a potentially significant impact and would,

therefore, benefit from being further investigated.

www.manaraa.com

343

22. Conclusion

Returning to the goal posed at the beginning of this thesis, it is now possible, based on

empirical data, to state the negative effects TD has on software development from several

different aspects, encompassing technical, financial, and human perspectives.

The studies in this thesis that investigate different types of TD show that ATD is of

significantly high importance to software companies and that, among the different types

of TD, ATD is the most commonly encountered type of TD. Furthermore, this study

shows that ATD has the greatest negative impact on daily software development work,

as estimated by all the different software professional roles surveyed.

Most commonly, in the available academic literature, the negative effects due to TD are

described in terms of maintenance complications and evolvability issues of the software.

However, this investigation has been able to show that TD also has negative effects on

other software quality attributes, which are thus important and need to be addressed. In

addition to causing maintainability complications and a limited ability to add new

features, this investigation also shows that TD has a negative effect on software quality

attributes, such as restricted reusability, poor reliability, and performance degradations,

by providing a quantified estimation of the negative impact of each of the compromised

quality attributes. Furthermore, this thesis broadly supports the common view presented

in academic literature in this area, where our study empirically shows that almost all the

investigated types of TD cause maintenance difficulties as the most frequently

encountered quality issue. When studying the frequency of encountering maintenance

complications with respect to the age of the software, this study did not find any evidence

for the generally held belief that maintenance complications increase with the age of the

software.

This Ph.D. thesis also shows that software suffering from TD caused software

practitioners to perform additional time-consuming work activities. The time spent on

these activities is referred to as wasted time in this thesis, where we also use this variable

as a proxy for productivity. By empirically assessing the amount of wasted time, using

data based from both single estimations and repeated reportings by software practitioners,

this study shows that software practitioners spend an extensive part of their software

development working time on these activities. One striking result emerging from this

study is that, on average, software practitioners (from several different roles) estimated

that 36% of all software development time is wasted because of paying the interest due

to TD. Furthermore, when specifically studying the amount of wasted time developers

report that they waste due to TD, our findings show that they waste, on average, 23%.

Moreover, when studying which different additional working tasks, this wasted time is

spent on, the following activities were identified: performing additional testing,

conducting additional source code analysis, and performing additional refactoring. This

study also found that all different software professional roles are affected by TD. Further,

the results also reveal that, on a quarter of the occasions where developers encounter TD,

they are forced to introduce additional TD due to the already existing TD. This burden of

being forced to introduce additional TD demonstrates the contagiousness of TD, inferring

that the interest cost of the TD might potentially grow exponentially.

www.manaraa.com

344

When studying how TD affects the developers’ morale, it is evident that working with

software experiencing TD can reduce their morale, which can be described in terms of

the issue that the TD hinders them from performing their tasks and achieving their goals.

On the other hand, the results clearly suggest that proper management of TD increases

developers’ morale.

This thesis also includes studies of the effects of TD in two different context-specific

domains; the startup domain and the safety-critical domain. When studying TD from a

startup company perspective, it is evident that software startups differ significantly from

mature organizations in how they accumulate and manage TD. The findings show, e.g.,

that intentionally introducing TD allows startups to cut development time, enable faster

feedback and increased revenue, preserve their resources, and decrease risk. Further,

while there are several similarities between non-safety critical software and safety-critical

software (SCS), our results show that there are also several major differences. One of the

differences is that that the heavy SCS regulations can potentially force companies to

perform work-around solutions that are counterproductive to achieving a maintainable

and evolvable software since the regulations constrain the possibility of performing

optimal TD refactoring activities. The overall results of this thesis empirically

demonstrate that software encountering TD in general, and ATD specifically, causes

several different negative effects, from both the technical, financial, and social

perspectives. The findings in this thesis further demonstrate that the consequences of TD

can, over time, result in issues such as project delays, software quality complications,

high defect rates, reduced developer morale, and very low developer productivity. In the

long run and left unchecked, these issues can seriously impede organizations’ ability to

grow and innovate by impeding innovation and expansion of their software systems.

This thesis also identifies several initiatives that can be undertaken in order to reduce the

negative effects of TD. The findings show that software development organizations need

to understand and continuously prioritize (e.g., by logging the TD items in the official

backlog) and remediate TD in both newer projects and in more mature software.

Implementing prevention mechanisms such as, e.g., introducing clear guidelines together

with regulations, can also have a positive impact on avoiding TD in the first place.

Moreover, one key necessity for reducing the potential negative effects of TD is to track

it. However, this study revealed that only 7% of the investigated companies had applied

a systematic tracking process for TD. This indicates that software companies need to be

armed with strategies and proactive management to enable them to track and manage the

interest of TD. Such strategies could result in better, more informed decisions to balance

the accumulation and the repayment of TD. Further, the result shows that a TD

management strategy based on encouraging activities is described as having a significant

impact on software engineers' attitudes and behaviors when addressing TD. Since 40% of

the surveyed software engineers state that they are not directly encouraged by managers

to keep the level of TD down, this indicates that there is considerable unfulfilled potential

to influence how software practitioners can further limit and reduce TD.

www.manaraa.com

345

www.manaraa.com

346

www.manaraa.com

347

23. Bibliography

[1] Elsevier. "CRediT author statement, https://www.elsevier.com/authors/journal-

authors/policies-and-ethics/credit-author-statement."

[2] C. Page, Software Engineering: Larsen and Keller Education, 2017.

[3] M. Reddy, "Chapter 4 - Design," API Design for C++, M. Reddy, ed., pp. 105-

150, Boston: Morgan Kaufmann, 2011.

[4] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt

in Software Engineering (Dagstuhl Seminar 16162),” Dagstuhl Reports, vol. 6,

no. 4, pp. 110-138, 2016.

[5] A. Martini, J. Bosch, and M. Chaudron, “Architecture technical debt:

Understanding causes and a qualitative model,” In: Proceedings - 40th

Euromicro Conference Series on Software Engineering and Advanced

Applications, SEAA 2014, 2014, pp. 85-92.

[6] C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek, and P.

Abrahamsson, “Software Development in Startup Companies: The Greenfield

Startup Model,” IEEE Transactions on Software Engineering, vol. 42, no. 6, pp.

585-604, 2016.

[7] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,” Journal

of Systems and Software, vol. 86, no. 6, pp. 1498-1516, 2013.

[8] E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What Software

Practitioners Have to Say about Technical Debt,” IEEE Software, vol. 29, no. 6,

pp. 22-27, 2012.

[9] V. Lenarduzzi, T. Orava, N. Saarimäki, K. Systa, and D. Taibi, “An Empirical

Study on Technical Debt in a Finnish SME,” In: 2019 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM),

2019, pp. 1-6.

[10] J. Yli-Huumo, A. Maglyas, and K. Smolander, “The sources and approaches to

management of technical debt: a case study of two product lines in a middle-size

finnish software company,” Conf. Product-Focused Software Process

Improvment, pp. 93-107, 2014.

[11] Z. Codabux, and B. Williams, “Managing technical debt: an industrial case

study,” Proceedings of the 4th International Workshop on Managing Technical

Debt, pp. 8-15, 2013.

[12] R. O. Spinola et al., “Investigating technical debt folklore: Shedding some light

on technical debt opinion,” Managing Technical Debt (MTD), 2013 4th

International Workshop on, pp. 1-7, 2013.

[13] C. Fernández-Sánchez, J. Garbajosa, and A. Yagüe, “A framework to aid in

decision making for technical debt management,” In: 7th IEEE Workshop on

Managing Technical Debt, 2015, pp. 69-76.

[14] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spinola,

“Towards an Ontology of Terms on Technical Debt,” In: Managing Technical

Debt (MTD), 2014 Sixth International Workshop on, 2014, pp. 1-7.

[15] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt

and its management,” Journal of Systems and Software, vol. 101, pp. 193-220,

2015.

https://www.elsevier.com/authors/journal-authors/policies-and-ethics/credit-author-statement
https://www.elsevier.com/authors/journal-authors/policies-and-ethics/credit-author-statement

www.manaraa.com

348

[16] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure it?

Manage it? Ignore it? software practitioners and technical debt,” In: Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering,

Bergamo, Italy, 2015, pp. 50-60.

[17] J. Holvitie, V. Leppanen, and S. Hyrynsalmi, “Technical Debt and the Effect of

Agile Software Development Practices on It - An Industry Practitioner Survey,”

In: Managing Technical Debt (MTD), 2014 Sixth International Workshop on,

2014, pp. 35-42.

[18] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to

Theory and Practice,” Software, IEEE, vol. 29, no. 6, pp. 18-21, 2012.

[19] S. McConnell. "Technical Debt. 10x Software Development [cited 2010 June

14]," http://www.construx.com/10x_Software_Development/Technical_Debt/.

[20] M. Fowler. "Technical Debt Quadrant. Bliki [Blog]," Dec, 2015;

http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html.

[21] D. A. Tamburri, P. Kruchten, P. Lago, and H. Van Vliet, “What is social debt in

software engineering?,” 2013 6th International Workshop on Cooperative and

Human Aspects of Software Engineering, CHASE 2013 - Proceedings, pp. 93-

96, 2013.

[22] Z. Li, P. Liang, and P. Avgeriou, "Architectural Debt Management in Value-

Oriented Architecting," Economics-Driven Software Architecture, pp. 183-204,

2014.

[23] A. Martini, and J. Bosch, “The Danger of Architectural Technical Debt:

Contagious Debt and Vicious Circles,” In: Proceedings - 12th Working

IEEE/IFIP Conference on Software Architecture, WICSA 2015, 2015, pp. 1-10.

[24] C. Fernández-Sánchez, J. Díaz, J. Pérez, and J. Garbajosa, “Guiding flexibility

investment in agile architecting,” In: Proceedings of the Annual Hawaii

International Conference on System Sciences, 2014, pp. 4807-4816.

[25] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and types of

technical debt,” In: 2012 3rd International Workshop on Managing Technical

Debt, MTD 2012 - Proceedings, 2012, pp. 49-53.

[26] Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou, “An empirical

investigation of modularity metrics for indicating architectural technical debt,”

In: Proceedings of the 10th international ACM Sigsoft conference on Quality of

software architectures, Marcq-en-Bareul, France, 2014, pp. 119-128.

[27] I. Ozkaya, R. L. Nord, H. Koziolek, and P. Avgeriou, “Second International

Workshop on Software Architecture and Metrics (SAM 2015),” In: Software

Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on,

2015, pp. 999-1000.

[28] P. Kruchten, “Strategic management of technical debt: Tutorial synopsis,” In:

Proceedings - International Conference on Quality Software, 2012, pp. 282-284.

[29] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou, "A

financial approach for managing interest in technical debt," Lecture Notes in

Business Information Processing, 2016, pp. 117-133.

[30] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “The

financial aspect of managing technical debt: A systematic literature review,”

Information and Software Technology, vol. 64, pp. 52, 2015.

[31] F. Mishkin, and E. Stanley, Financial Markets and Institutions, seventh ed.:

Pearson Prentice Hall, 2012.

http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

www.manaraa.com

349

[32] N. Brown et al., “Managing technical debt in software-reliant systems,” In:

Proceedings of the FSE/SDP workshop on Future of software engineering

research, Santa Fe, New Mexico, USA, 2010, pp. 47-52.

[33] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal of an

application's technical debt,” IEEE Software, vol. 29, no. 6, pp. 34-42, 2012.

[34] J. de Groot, A. Nugroho, T. Back, and J. Visser, “What is the value of your

software?,” In: Managing Technical Debt (MTD), 2012 Third International

Workshop on, 2012, pp. 37-44.

[35] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the impact

of design debt on software quality,” In: Proceedings of the 2nd Workshop on

Managing Technical Debt, Waikiki, Honolulu, HI, USA, 2011, pp. 17-23.

[36] ISO/IEC, “Systems and software engineering — Systems and software Quality

Requirements and Evaluation (SQuaRE) system and software quality models,

ISO/IEC FDIS 25010:2011,” 2011, pp. 1-34.

[37] D. L. Parnas, “Software aging,” In: Software Engineering, 1994. Proceedings.

ICSE-16., 16th International Conference on, 1994, pp. 279-287.

[38] L. de Silva, and D. Balasubramaniam, “Controlling software architecture

erosion: A survey,” Journal of Systems and Software, vol. 85, pp. 132-151, 2012.

[39] T. Mens et al., “Challenges in software evolution,” In: Eighth International

Workshop on Principles of Software Evolution (IWPSE'05), 2005, pp. 13-22.

[40] M. Lindgren, R. Land, C. Norström, and A. Wall, “Key Aspects of Software

Release Planning in Industry,” In: 19th Australian Conference on Software

Engineering (aswec 2008), 2008, pp. 320-329.

[41] I. Macia et al., “Are automatically-detected code anomalies relevant to

architectural modularity?: an exploratory analysis of evolving systems,” In:

Proceedings of the 11th annual international conference on Aspect-oriented

Software Development, Potsdam, Germany, 2012, pp. 167-178.

[42] N. S. R. Alves et al., “Identification and Management of Technical Debt: A

Systematic Mapping Study,” Information and Software Technology, 2015.

[43] C. Sadowski, and T. Zimmermann, “Rethinking Productivity in Software

Engineering,” Apress, 2019.

[44] W. Scacchi, “Understanding Software Productivity,,” International Journal of

Software Engineering and Knowledge Engineering, vol. 1, no. 3, pp. 293-321,

1991.

[45] E. Oliveira, D. Viana, M. Cristo, and T. Conte, “How have Software Engineering

Researchers been Measuring Software Productivity? A Systematic Mapping

Study,” Proceedings of the 19th International Conference on Enterprise

Information Systems (ICEIS), no. 2, pp. 76-87, 2017.

[46] K. D. Maxwell, “Software Development Productivity,” Advances in Computers,

vol. 58, pp. 1-46, 2003.

[47] B. Hardy, "Morale: definitions, dimensions and measurement," PhD diss.

University of Cambridge, 2010.

[48] N. Zazworka, C. Seaman, and F. Shull, “Prioritizing design debt investment

opportunities,” In: Proceedings of the 2nd Workshop on Managing Technical

Debt, Waikiki, Honolulu, HI, USA, 2011, pp. 39-42.

[49] L. F. Ribeiro, N. S. R. Alves, M. G. d. M. Neto, and R. O. Spínola, “A Strategy

Based on Multiple Decision Criteria to Support Technical Debt Management,”

In: 2017 43rd Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), 2017, pp. 334-341.

www.manaraa.com

350

[50] C. Seaman et al., “Using technical debt data in decision making: Potential

decision approaches,” In: Managing Technical Debt (MTD), 2012 Third

International Workshop on, 2012, pp. 45-48.

[51] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards a prioritization

of code debt: A code smell Intensity Index,” In: 2015 IEEE 7th International

Workshop on Managing Technical Debt (MTD), 2015, pp. 16-24.

[52] Y. Guo, R. Spínola, and C. Seaman, “Exploring the costs of technical debt

management – a case study,” Empirical Software Engineering, pp. 1-24, 2014.

[53] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework for making

architectural decisions in a business context,” In: 2010 ACM/IEEE 32nd

International Conference on Software Engineering, 2010, pp. 149-157.

[54] A. Martini, and J. Bosch, “An empirically developed method to aid decisions on

architectural technical debt refactoring: AnaConDebt,” In: Proceedings of the

38th International Conference on Software Engineering Companion, Austin,

Texas, 2016, pp. 31-40.

[55] A. Martini, E. Sikander, and N. Medlani, “Estimating and Quantifying the

Benefits of Refactoring to Improve a Component Modularity: A Case Study,”

In: 2016 42th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), 2016, pp. 92-99.

[56] V. Van, Software Engineering: Principles and Practice: John Wiley & Sons,

2008.

[57] A. A. Chughtai, “Linking affective commitment to supervisor to work

outcomes,” Journal of Managerial Psychology, vol. Vol. 28 No. 6, pp. 606-62,

2013.

[58] H. Ghanbari, “Seeking technical debt in critical software development projects:

An exploratory field study,” In: Proceedings of the Annual Hawaii International

Conference on System Sciences, 2016, pp. 5407-5416.

[59] Y. Luo, A. K. Saberi, and M. v. den Brand, "Safety-Driven Development and

ISO 26262," Automotive Systems and Software Engineering: State of the Art

and Future Trends, Y. Dajsuren and M. van den Brand, eds., pp. 225-254, Cham:

Springer International Publishing, 2019.

[60] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, and P.

Abrahamsson, “Software development in startup companies: A systematic

mapping study,” Information and Software Technology, vol. 56, no. 10, pp.

1200-1218, 2014.

[61] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, "Selecting Empirical

Methods for Software Engineering Research," Guide to Advanced Empirical

Software Engineering, F. Shull, J. Singer and D. I. K. Sjøberg, eds., pp. 285-311,

London: Springer London, 2008.

[62] C. Pope, and N. Mays, “Qualitative Research: Reaching the parts other methods

cannot reach: an introduction to qualitative methods in health and health services

research,” British Medical Journal 311, pp. 42-45, 1995.

[63] K. Henwood, "Qualitative Research," Encyclopedia of Critical Psychology, T.

Teo, ed., pp. 1611-1614, New York, NY: Springer New York, 2014.

[64] D. M. Mertens, and S. Hesse-Biber, “Triangulation and Mixed Methods

Research: Provocative Positions,” Journal of Mixed Methods Research, vol. 6,

no. 2, pp. 75-79, 2012.

[65] J. W. Creswell, Research design: qualitative, quantitative, and mixed methods

approaches, Fourth, international student ed., Los Angeles, Calif: SAGE, 2014.

www.manaraa.com

351

[66] R. K. Yin, Case study research: design and methods, London: SAGE, 2014.

[67] R. E. Ployhart, and R. J. Vandenberg, “Longitudinal Research: The Theory,

Design, and Analysis of Change,” Journal of Management, vol. 36, no. 1, pp.

94-120, 2009.

[68] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of replications in

Empirical Software Engineering,” Empirical Software Engineering, vol. 13, no.

2, pp. 211-218, 2008.

[69] L. M. Pickard, B. A. Kitchenham, and P. W. Jones, “Combining empirical results

in software engineering,” Information and Software Technology, vol. 40, no. 14,

pp. 811-821, 1998.

[70] M. Shepperd, N. Ajienka, and S. Counsell, “The role and value of replication in

empirical software engineering results,” Information and Software Technology,

vol. 99, pp. 120-132, 2018.

[71] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge through families of

experiments,” IEEE Transactions on Software Engineering, vol. 25, no. 4, pp.

456-473, 1999.

[72] S. Vegas et al., “Analysis of the influence of communication between

researchers on experiment replication,” In: Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software engineering, Rio de Janeiro,

Brazil, 2006, pp. 28-37.

[73] P. Runeson, and M. Höst, “Guidelines for conducting and reporting case study

research in software engineering,” Empirical Software Engineering, vol. 14, pp.

131-164, 2009.

[74] P. Birmingham, and D. Wilkinson, Using Research Instruments : A Guide for

Researchers, Abingdon, Oxon, UNITED STATES: Taylor and Francis, 2003.

[75] K.-J. Stol, and B. Fitzgerald, “A holistic overview of software engineering

research strategies,” In: Proceedings of the Third International Workshop on

Conducting Empirical Studies in Industry, Florence, Italy, 2015, pp. 47-54.

[76] M. Van Selm, and N. W. Jankowski, “Conducting Online Surveys,” Quality and

Quantity, vol. 40, no. 3, pp. 435-456, 2006.

[77] R. Czaja, and J. Blair, Designing surveys: a guide to decisions and procedures,

Thousand Oaks, Calif: Pine Forge Press, 2005.

[78] B. A. Kitchenham, and S. L. Pfleeger, "Personal Opinion Surveys," pp. 63-92,

London: Springer London, 2008.

[79] B. Barn, S. Barat, and T. Clark, “Conducting Systematic Literature Reviews and

Systematic Mapping Studies,” In: Proceedings of the 10th Innovations in

Software Engineering Conference, Jaipur, India, 2017, pp. 212-213.

[80] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK,

Keele University, vol. 33, no. 2004, pp. 1-26, 2004.

[81] C. Fisher, Researching and Writing a Dissertation: a guidebook for business

students: Prentice Hall, 2007.

[82] G. B. Schaalje, J. B. McBride, and G. W. Fellingham, “Adequacy of

Approximations to Distributions of Test Statistics in Complex Mixed Linear

Models,” Journal of Agricultural, Biological, and Environmental Statistics, vol.

7, no. 4, pp. 512-524, 2002.

[83] S. Holm, “A Simple Sequentially Rejective Multiple Test Procedure,”

Scandinavian Journal of Statistics, vol. 6, pp. 65-70, 1979.

[84] V. Braun, and V. Clarke, “Using thematic analysis in psychology, Qualitative

research in psychology, 3(2),” 2006, pp. 77-101.

www.manaraa.com

352

[85] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding In-depth

Semistructured Interviews Problems of Unitization and Intercoder Reliability

and Agreement,” Sociological Methods & Research, 2013.

[86] C. Wohlin et al., Experimentation in software engineering: an introduction:

Kluwer Academic Publishers, 2000.

[87] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a

replication in software engineering,” In: Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering, London,

England, United Kingdom, 2014, pp. 1-10.

[88] J. M. Morse, M. Barrett, M. Mayan, K. Olson, and J. Spiers, “Verification

Strategies for Establishing Reliability and Validity in Qualitative Research,”

International Journal of Qualitative Methods, vol. 1, no. 2, pp. 13-22, 2002.

[89] J. Miller, “Triangulation as a basis for knowledge discovery in software

engineering,” Empirical Software Engineering, vol. 13, no. 2, pp. 223-228, 2008.

[90] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons

from applying the systematic literature review process within the software

engineering domain,” Journal of Systems and Software, vol. 80, no. 4, pp. 571-

583, 2007.

[91] W. Cunningham, “The WyCash portfolio management system, in: 7th

International Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA ’92),” 1992, pp. 29–30.

[92] H. Van Vliet, Software Engineering: Principles and Practice: John Wiley &

Sons, 2008.

[93] A. Martini, J. Bosch, and M. Chaudron, “Architecture Technical Debt:

Understanding Causes and a Qualitative Model,” In: Software Engineering and

Advanced Applications (SEAA), 2014 40th EUROMICRO Conference on,

2014, pp. 85-92.

[94] T. Besker, A. Martini, and J. Bosch, “Impact of Architectural Technical Debt on

Daily Software Development Work - A Survey of Software Practitioners ” In:

43th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Vienna, 2017, pp. 278-287.

[95] T. Besker, A. Martini, and J. Bosch, “Time to Pay Up - Technical Debt from a

Software Quality Perspective,” In: proceedings of the 20th Ibero American

Conference on Software Engineering (CibSE) @ ICSE17, Buenos Aires,

Argentina, 2017, pp. pp. in print. .

[96] Z. Li, P. Liang, and P. Avgeriou, "Chapter 5 - Architecture viewpoints for

documenting architectural technical debt," Software Quality Assurance, I. M. S.

A. G. Tekinerdogan, ed., pp. 85-132, Boston: Morgan Kaufmann, 2016.

[97] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search of a

metric for managing architectural technical debt,” In: Proceedings of the 2012

Joint Working Conference on Software Architecture and 6th European

Conference on Software Architecture, WICSA/ECSA 2012, 2012, pp. 91-100.

[98] A. Martini, T. Besker, and J. Bosch, “The Introduction of Technical Debt

Tracking in Large Companies,” In: 2016 23rd Asia-Pacific Software

Engineering Conference (APSEC), 2016, pp. 161-168.

[99] O. Zimmermann, “Designed and delivered today, eroded tomorrow?: towards an

open and lean architecting framework balancing agility and sustainability,” In:

Proccedings of the 10th European Conference on Software Architecture

Workshops, Copenhagen, Denmark, 2016, pp. 1-1.

www.manaraa.com

353

[100] B. Kitchenham et al., “Systematic literature reviews in software engineering –

A systematic literature review,” Information and Software Technology, vol. 51,

no. 1, pp. 7-15, 2009.

[101] T. Besker, A. Martini, and J. Bosch, “A Systematic Literature Review and a

Unified Model of ATD,” In: 42th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 2016, pp. 189-197.

[102] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the Principal of an

Application's Technical Debt,” Software, IEEE, vol. 29, no. 6, pp. 34-42, 2012.

[103] Z. Li, P. Liang, and P. Avgeriou, “Architectural Technical Debt Identification

Based on Architecture Decisions and Change Scenarios,” In: Proceedings - 12th

Working IEEE/IFIP Conference on Software Architecture, WICSA 2015, 2015,

pp. 65-74.

[104] D. Falessi, M. A. Shaw, F. Shull, K. Mullen, and M. S. Keymind, “Practical

considerations, challenges, and requirements of tool-support for managing

technical debt,” In: Managing Technical Debt (MTD), 2013 4th International

Workshop, 2013, pp. 16-19.

[105] C. Wohlin et al., “On the reliability of mapping studies in software engineering,”

Journal of Systems and Software, vol. 86, no. 10, pp. 2594-2610, 2013.

[106] S. Jalali, and C. Wohlin, “Systematic literature studies: database searches vs.

backward snowballing,” In: Proceedings of the ACM-IEEE international

symposium on Empirical software engineering and measurement, Lund,

Sweden, 2012, pp. 29-38.

[107] J. Webster, and R. T. Watson, “Analyzing the past to prepare for the future:

writing a literature review,” MIS Quarterly,, vol. 26: 2, 2002.

[108] B. A. Kitchenham et al., “Preliminary guidelines for empirical research in

software engineering,” Software Engineering, IEEE Transactions on, vol. 28,

no. 8, pp. 721-734, 2002.

[109] R. Mo, J. Garcia, C. Yuanfang, and N. Medvidovic, “Mapping architectural

decay instances to dependency models,” In: Managing Technical Debt (MTD),

2013 4th International Workshop on, 2013, pp. 39-46.

[110] A. Martini, J. Bosch, and M. Chaudron, “Investigating Architectural Technical

Debt accumulation and refactoring over time: A multiple-case study,”

Information and Software Technology, vol. 67, pp. 237-253, 2015.

[111] P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, and C. Seaman, “Reducing

friction in software development,” IEEE Software, vol. 33, no. 1, pp. 66-72,

2016.

[112] E. Poort, “Just Enough Anticipation: Architect Your Time Dimension,” IEEE

Software, vol. 33, no. 6, pp. 11-15, 2016.

[113] A. MacCormack, and D. J. Sturtevant, “Technical debt and system architecture:

The impact of coupling on defect-related activity,” Journal of Systems and

Software, vol. 120, pp. 170-182, 2016.

[114] N. Ramasubbu, and C. F. Kemerer, “Technical debt and the reliability of

enterprise software systems: A competing risks analysis,” Management Science,

vol. 62, no. 5, pp. 1487-1510, 2016.

[115] S. Bellomo, N. Ernst, R. Nord, and R. Kazman, “Toward design decisions to

enable deployability: Empirical study of three projects reaching for the

continuous delivery holy grail,” In: Proceedings - 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, DSN 2014,

2014, pp. 702-707.

www.manaraa.com

354

[116] R. Kazman et al., “A Case Study in Locating the Architectural Roots of

Technical Debt,” In: Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE

International Conference on, 2015, pp. 179-188.

[117] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and quantifying

architectural debt,” In: Proceedings - International Conference on Software

Engineering, 2016, pp. 488-498.

[118] E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Ygeionomakis, “Identification

of refused bequest code smells,” In: IEEE International Conference on Software

Maintenance, ICSM, 2013, pp. 392-395.

[119] K. Schmid, "A formal approach to technical debt decision making," Proceedings

of the 9th international ACM Sigsoft conference on Quality of software

architectures, ACM, 2013, pp. 153-162.

[120] C. Izurieta, G. Rojas, and I. Griffith, “Preemptive Management of Model Driven

Technical Debt for Improving Software Quality,” In: Proceedings of the 11th

International ACM SIGSOFT Conference on Quality of Software Architectures,

Montreal, QC, Canada, 2015, pp. 31-36.

[121] A. Martini, and J. Bosch, “Towards Prioritizing Architecture Technical Debt:

Information Needs of Architects and Product Owners,” In: Software

Engineering and Advanced Applications (SEAA), 2015 41st Euromicro

Conference on, 2015, pp. 422-429.

[122] A. Martini, E. Sikander, N. Medlani, and I. C. Soc, “Estimating and Quantifying

the Benefits of Refactoring to Improve a Component Modularity: a Case Study,”

2016 42nd Euromicro Conference on Software Engineering and Advanced

Applications (Seaa), pp. 92-99, 2016.

[123] D. A. Tamburri, and E. D. Nitto, “When Software Architecture Leads to Social

Debt,” In: Proceedings - 12th Working IEEE/IFIP Conference on Software

Architecture, WICSA 2015, 2015, pp. 61-64.

[124] B. Vogel-Heuser, and S. Rösch, “Applicability of Technical Debt as a Concept

to Understand Obstacles for Evolution of Automated Production Systems,” In:

Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on,

2015, pp. 127-132.

[125] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise perspective

on technical debt,” In: Proceedings of the 2nd Workshop on Managing Technical

Debt, Waikiki, Honolulu, HI, USA, 2011, pp. 35-38.

[126] J. Brondum, and L. Zhu, “Visualising architectural dependencies,” In:

Proceedings of the Third International Workshop on Managing Technical Debt,

Zurich, Switzerland, 2012, pp. 7-14 *.

[127] U. Eliasson, A. Martini, R. Kaufmann, and S. Odeh, “Identifying and visualizing

Architectural Debt and its efficiency interest in the automotive domain: A case

study,” In: Managing Technical Debt (MTD), 2015 IEEE 7th International

Workshop on, 2015, pp. 33-40.

[128] F. A. Fontana, R. Roveda, and M. Zanoni, “Technical Debt Indexes Provided by

Tools: A Preliminary Discussion,” In: Proceedings - 2016 IEEE 8th

International Workshop on Managing Technical Debt, MTD 2016, 2016, pp. 28-

31.

[129] C. Izurieta, I. Ozkaya, C. Seaman, and W. Snipes, “Technical Debt: A Research

Roadmap Report on the Eighth Workshop on Managing Technical Debt (MTD

2016),” SIGSOFT Softw. Eng. Notes, vol. 42, no. 1, pp. 28-31, 2017.

www.manaraa.com

355

[130] D. Reimanis, C. Izurieta, and Ieee, "Towards Assessing the Technical Debt of

Undesired Software Behaviors in Design Patterns," 2016 Ieee 8th International

Workshop on Managing Technical Debt, International Workshop on Managing

Technical Debt, pp. 24-27, New York: Ieee, 2016.

[131] B. Boehm, “Architecture-Based Quality Attribute Synergies and Conflicts,” In:

Proceedings - 2nd International Workshop on Software Architecture and

Metrics, SAM 2015, 2015, pp. 29-34.

[132] F. A. Fontana, V. Ferme, and M. Zanoni, “Towards Assessing Software

Architecture Quality by Exploiting Code Smell Relations,” In: Proceedings -

2nd International Workshop on Software Architecture and Metrics, SAM 2015,

2015, pp. 1-7.

[133] A. Choudhary, and P. Singh, “Minimizing refactoring effort through

prioritization of classes based on historical, architectural and code smell

information,” In: CEUR Workshop Proceedings, 2016, pp. 76-79.

[134] N. A. Ernst, “On the role of requirements in understanding and managing

technical debt,” In: Managing Technical Debt (MTD), 2012 Third International

Workshop on, 2012, pp. 61-64.

[135] A. Martini, L. Pareto, and J. Bosch, "Towards Introducing Agile Architecting in

Large Companies: The CAFFEA Framework," Agile Processes, in Software

Engineering, and Extreme Programming, Lecture Notes in Business Information

Processing C. Lassenius, T. Dingsøyr and M. Paasivaara, eds., pp. 218-223:

Springer International Publishing, 2015.

[136] D. Budgen, B. Kitchenham, and P. Brereton, “The Case for Knowledge

Translation,” In: 2013 ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement, 2013, pp. 263-266.

[137] R. Nickerson, J. Muntermann, U. Varshney, and H. Isaac, “Taxonomy

development in information systems: developing a taxonomy of mobile

applications, in: 17th European Conference in Information Systems (ECIS ‘09),

Italy,” 2009, pp. 1138–1149.

[138] C. Fernández-Sánchez, J. Garbajosa, A. Yagüe, and J. Perez, “Identification and

analysis of the elements required to manage technical debt by means of a

systematic mapping study,” Journal of Systems and Software, vol. 124, pp. 22-

38, 2017.

[139] C. Fernández-Sánchez, J. Garbajosa, C. Vidal, and A. Yagüe, “An Analysis of

Techniques and Methods for Technical Debt Management: A Reflection from

the Architecture Perspective,” In: Proceedings - 2nd International Workshop on

Software Architecture and Metrics, SAM 2015, 2015, pp. 22-28.

[140] ISO/IEC 25010:201. "“System and software quality models.”," 2017-01-22;

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en.

[141] M. F. Aniche, G. A. Oliva, and M. A. Gerosa, “Are the Methods in Your Data

Access Objects (DAOs) in the Right Place? A Preliminary Study,” In: Managing

Technical Debt (MTD), 2014 Sixth International Workshop on, 2014, pp. 47-50.

[142] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical debt

and interest,” In: Proceedings of the 2nd Workshop on Managing Technical

Debt, Waikiki, Honolulu, HI, USA, 2011, pp. 1-8.

[143] D. A. Tamburri, P. Kruchten, P. Lago, and H. Van Vliet, “What is social debt in

software engineering?,” In: 2013 6th International Workshop on Cooperative

and Human Aspects of Software Engineering, CHASE 2013 - Proceedings,

2013, pp. 93-96.

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

www.manaraa.com

356

[144] T. Besker, A. Martini, and J. Bosch, “The pricey Bill of Technical Debt - When

and by whom will it be paid? ,” In: IEEE International Conference on Software

Maintenance and Evolution (ICSME), Shanghai, China, 2017, pp. 13-23.

[145] P. Runeson, and M. Höst, “Guidelines for conducting and reporting case study

research in software engineering,” Empirical Software Engineering, vol. 14, no.

2, pp. 131-164, 2008.

[146] R. A. Krueger, and M. A. Casey, Focus groups: a practical guide for applied

research, Thousand Oaks, Calif: Sage Publications, 2009.

[147] C. F. Auerbach, L. B. Silverstein, and Ebrary, Qualitative data: an introduction

to coding and analysis, New York: New York University Press, 2003.

[148] L. M. Lix, J. C. Keselman, and H. J. Keselman, “Consequences of Assumption

Violations Revisited: A Quantitative Review of Alternatives to the One-Way

Analysis of Variance "F" Test,” Review of Educational Research, vol. 66, no. 4,

pp. 579-619, 1996.

[149] Z. Codabux, and B. Williams, “Managing technical debt: an industrial case

study,” In: Proceedings of the 4th International Workshop on Managing

Technical Debt, San Francisco, California, 2013, pp. 8-15.

[150] T. Besker, A. Martini, and J. Bosch, “A systematic literature review and a unified

model of ATD,” In: Euromicro Conference series on Software Engineering and

Advanced Applications (SEAA), 2016.

[151] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and types of

technical debt,” In: Proceedings of the Third International Workshop on

Managing Technical Debt, Zurich, Switzerland, 2012, pp. 49-53.

[152] A. Szykarski. "Ted Theodorpoulos on Managing Technical Debt Successfully,

Available from: http://www.ontechnicaldebt.com/blog/ted-theodoropoulos-on-

managing-technical-debt-successfully/."

[153] T. Besker, A. Martini, and J. Bosch, “Managing architectural technical debt: A

unified model and systematic literature review,” Journal of Systems and

Software, vol. 135, no. Supplement C, pp. 1-16, 2018.

[154] N. Mellegård, “Using weekly open defect reports as an indicator for software

process efficiency: theoretical framework and a longitudinal automotive

industrial case study,” In: Proceedings of the 27th International Workshop on

Software Measurement and 12th International Conference on Software Process

and Product Measurement, Gothenburg, Sweden, 2017, pp. 170-175.

[155] V. S. Fonseca, M. P. Barcellos, and R. de Almeida Falbo, “An ontology-based

approach for integrating tools supporting the software measurement process,”

Science of Computer Programming, vol. 135, pp. 20-44, 2017.

[156] M. Murray, and N. Kujundzic, Critical Reflection : A Textbook for Critical

Thinking, Montreal, CANADA: MQUP, 2005.

[157] T. Besker, A. Martini, and J. Bosch, “Technical Debt Cripples Software

Developer Productivity - A longitudinal study on developers’ daily software

development work,” First International Conference on Technical Debt @

ICSE18, 2018.

[158] V. Basili, G. Caldiera, and D. Rombach, “The Goal Question Metric Approach,”

Encyclopedia of Software Eng., J.J. Marciniak, ed., pp. 528-532, 19924.

[159] E. Oliveira, D. Viana, M. Cristo, T. Conte, and “How have Software Engineering

Researchers been Measuring Software Productivity? A Systematic Mapping

Study ” In: Proceedings of the 19th International Conference on Enterprise

Information Systems (ICEIS), 2017, pp. 76-87.

http://www.ontechnicaldebt.com/blog/ted-theodoropoulos-on-managing-technical-debt-successfully/
http://www.ontechnicaldebt.com/blog/ted-theodoropoulos-on-managing-technical-debt-successfully/

www.manaraa.com

357

[160] K. D. Maxwell, “Collecting data for comparability: benchmarking software

development productivity,” IEEE Software, vol. 18, no. 5, pp. 22-25, 2001.

[161] R. W. Jensen, Improving Software Development Productivity: Effective

Leadership and Quantitative Methods in Software Management: Prentice Hall

Press, 2014.

[162] T. Sedano, P. Ralph, and C. e. Péraire, “Software development waste,” In:

Proceedings of the 39th International Conference on Software Engineering,

Buenos Aires, Argentina, 2017, pp. 130-140.

[163] A. Martini, and J. Bosch, “On the interest of architectural technical debt:

Uncovering the contagious debt phenomenon,” Journal of Software: Evolution

and Process, 2017.

[164] A. Martini, T. Besker, and J. Bosch, “Technical debt tracking: Current state of

practice a survey and multiple case study in 15 large organizations,” Science of

Computer Programming, 2018.

[165] R. J. Eisenberg, “A threshold based approach to technical debt,” SIGSOFT

Softw. Eng. Notes, vol. 37, no. 2, pp. 1-6, 2012.

[166] N. Juristo, A. M. Moreno, SpringerLink, and A. SpringerLink, Basics of

Software Engineering Experimentation, 1 ed., Boston, MA: Springer US, 2001.

[167] D. F. Morrison, “The optimal spacing of repeated measurements,” Biometrics,

vol. 26:281-90, 1970.

[168] R. Core-Team, “R: A language and environment for statistical computing. R

Foundation for Statistical Computing,” URL https://www.R-project.org/, 2016.

[169] T. Therneau, and B. Atkinson, “ rpart: Recursive Partitioning and Regression

Trees. R package version 4.1-13.

URL https://CRAN.R-project.org/package=rpart,” 2018.

[170] C. B. Seaman, “Qualitative methods in empirical studies of software

engineering,” IEEE Transactions on Software Engineering, vol. 25, no. 4, pp.

557-572, 1999.

[171] J. C. Carver, “Towards Reporting Guidelines for Experimental Replications: A

Proposal,” In: 1st International Workshop on Replication in Empirical Software

Engineering Research (RESER), Cape Town, South Africa, 2010.

[172] D. Graziotin, X. Wang, and P. Abrahamsson, “Do feelings matter? On the

correlation of affects and the self-assessed productivity in software

engineering,” J. Softw. Evol. Process, vol. 27, no. 7, pp. 467-487, 2015.

[173] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou, “A

financial approach for managing interest in technical debt,” Lecture Notes in

Business Information Processing, vol. 257, pp. 117-133, 2016.

[174] C. Peterson, N. Park, and P. J. Sweeney, “Group well‐being: morale from a

positive psychology perspective,” Appl.Psychol., vol. 57, no. s1, pp. 19-36.

[175] L. McLeod, and B. Doolin, “Information systems development as situated socio-

technical change: a process approach,” European Journal of Information

Systems, vol. 21, no. 2, pp. 176-191, 2012.

[176] R. Feldt, L. Angelis, R. Torkar, and M. Samuelsson, “Links between the

personalities, views and attitudes of software engineers,” Information and

Software Technology, vol. 52, no. 6, pp. 611-624, 2010.

[177] F. Fagerholm, and J. Münch, “Developer experience: concept and definition,”

2012 International Conference on Software and System Process (ICSSP), pp.

73-77.

https://www.r-project.org/
https://cran.r-project.org/package=rpart

www.manaraa.com

358

[178] Graziotin, X. Wang, and P. Abrahamsson, “Happy software developers solve

problems better: psychological measurements in empirical software

engineering,” PeerJ. 2: e289, 2014.

[179] J. Abbott, “Does employee satisfaction matter? A study to determine whether

low employee morale affects customer satisfaction and profits in the business-

to-business sector,” Journal of Communication Management 7(4):, pp. 333-339,

2003.

[180] C. J. Stowe, “Incorporating morale into a classical agency model: implications

for incentives, effort, and organization,” Economics of governance. 10(2), 2009.

[181] D. Damian, and J. Chisan, “An empirical study of the complex relationships

between requirements engineering processes and other processes that lead to

payoffs in productivity, quality, and risk management,” IEEE Transactions on

Software Engineering, vol. 32, no. 7, pp. 433-453, 2006.

[182] R. E. Fairley, and M. J. Willshire, “Iterative rework: The good, the bad, and the

ugly,” Computer, vol. 38, no. 9, pp. 34-41, 2005.

[183] L. R. Foulds, and M. West, “The productivity of large business information

system development,” Int. J. Bus. Inf. Syst., vol. 2, no. 2, pp. 162-181, 2007.

[184] T. Hall, D. Jagielska, and N. Baddoo, “Motivating developer performance to

improve project outcomes in a high maturity organization,” Software Quality

Journal, vol. 15, no. 4, pp. 365-381, 2007.

[185] C. Becker, D. Walker, and C. McCord, “Intertemporal Choice: Decision Making

and Time in Software Engineering,” 2017 IEEE/ACM 10th International

Workshop on Cooperative and Human Aspects of Software Engineering

(CHASE), pp. 23-29, 2017.

[186] W. Cunningham, “The WyCash portfolio management system, in: 7th

International Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA ’92),” pp. 29–30, 1992.

[187] H. Ghanbari, T. Besker, A. Martini, and J. Bosch, “Looking for Peace of Mind?

Manage your (Technical) Debt - An Exploratory Field Study,” 11th International

Symposium On Empirical Engineering and Measurement (ESEM), 2017.

[188] N. Brown et al., “Managing technical debt in software-reliant systems,”

Proceedings of the FSE/SDP workshop on Future of software engineering

research, pp. 47-52, 2010.

[189] F. Fagerholm et al., “Performance Alignment Work: How software developers

experience the continuous adaptation of team performance in Lean and Agile

environments,” Information and Software Technology, vol. 64, pp. 132-147,

2015.

[190] P. Ralph, and P. Kelly, “The dimensions of software engineering success,”

Proceedings of the 36th International Conference on Software Engineering

(ICSE), pp. 24-35, 2014.

[191] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Motivation in

Software Engineering: A systematic literature review,” Information and

Software Technology, vol. 50, no. 9–10, pp. 860-878, 2008.

[192] J. M. Verner, M. A. Babar, N. Cerpa, T. Hall, and S. Beecham, “Factors that

motivate software engineering teams: A four country empirical study,” Journal

of Systems and Software, vol. 92, pp. 115-127, 2014.

[193] D. Laribee, “Code Cleanup - Using Agile Techniques to Pay Back Technical

Debt,” Msdn, no. 2019-10-07, pp. https://msdn.microsoft.com/en-

us/magazine/ee819135.aspx, 2009.

https://msdn.microsoft.com/en-us/magazine/ee819135.aspx
https://msdn.microsoft.com/en-us/magazine/ee819135.aspx

www.manaraa.com

359

[194] B. Vogel-Heuser, and E.-M. Neumann, “Adapting the concept of technical debt

to software of automated Production Systems focusing on fault handling, mode

of operation and safety aspects,” IFAC-Papers OnLine, vol. 50, no. 1, pp. 5887-

5894, 2017.

[195] J. Keyes, “Social software engineering,” Auerbach Series, 2011.

[196] R. Alfayez, P. Behnamghader, K. Srisopha, and B. Boehm, “An Exploratory

Study on the Influence of Developers in Technical Debt,” IEEE/ACM

International Conference on Technical Debt (TechDebt), pp. 1-10, 2018.

[197] M. J. Salamea, and C. Farré, “Influence of Developer Factors on Code Quality:

A Data Study,” 19th International Conference on Software Quality, Reliability

and Security Companion (QRS-C), pp. 120-125, 2019.

[198] B. Hardy, “Morale: definitions, dimensions and measurement,” PhD diss.

University of Cambridge, 2010.

[199] A. C. C. França, T. B. Gouveia, P. C. F. Santos, C. A. Santana, and F. Q. B. d.

Silva, “Motivation in software engineering: A systematic review update,” 15th

Annual Conference on Evaluation & Assessment in Software Engineering

(EASE 2011), pp. 154-163, 2011.

[200] S. McConnell. "Technical Debt. 10x Software Development [cited 2010 June

14]," 2019-10-07;

http://www.construx.com/10x_Software_Development/Technical_Debt/.

[201] L. Peters, “Technical Debt: The Ultimate Antipattern - The Biggest Costs May

Be hidden, Widespread, and Long Term,” Managing Technical Debt (MTD),

2014 Sixth International Workshop on, pp. 8-10, 2014.

[202] M. Lavallée, and P. N. Robillard, “The impacts of software process

improvement on developers: A systematic review,” 2012 34th International

Conference on Software Engineering (ICSE), pp. 113-122, 2012.

[203] C. B. Jaktman, “The influence of organisational factors on the success and

quality of a product-line architecture,” Australian Software Engineering

Conference (Cat. No.98EX233), pp. 2-11, 1998.

[204] G. Suryanarayana, G. Samarthyam, and T. Sharma, "Chapter 1 - Technical

Debt," Refactoring for Software Design Smells, G. Suryanarayana, G.

Samarthyam and T. Sharma, eds., pp. 1-7, Boston: Morgan Kaufmann, 2015.

[205] C. F. Evans Data Corp, and Stripe research, “The developer coefficient software

engineering efficiency and its $3 trillion impact on global gdp. ,”

https://stripe.com/files/reports/the-developer-coefficient.pdf, 2018.

[206] I. Ozkaya, “The Voice of the Developer,” IEEE Software, vol. 36, no. 5, pp. 3-

5, 2019.

[207] A. Aldaeej, Towards Effective Technical Debt Decision Making in Software

Startups: Association for Computing Machinery, 2019.

[208] R. H. Rasch, and H. L. Tosi, “Factors Affecting Software Developers'

Performance: An Integrated Approach,” MIS Quarterly, vol. 16, no. 3, pp. 395-

413, 1992.

[209] H. Alahyari, T. Gorschek, and R. Berntsson Svensson, “An exploratory study of

waste in software development organizations using agile or lean approaches: A

multiple case study at 14 organizations,” Information and Software Technology,

vol. 105, pp. 78-94, 2019.

[210] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “What happens

when software developers are (un)happy,” Journal of Systems and Software, vol.

140, pp. 32-47, 2018.

http://www.construx.com/10x_Software_Development/Technical_Debt/
https://stripe.com/

www.manaraa.com

360

[211] T. Sedano, P. Ralph, and C. e. Péraire, “Software development waste,” In:

Proceedings of the 39th International Conference on Software Engineering,

Buenos Aires, Argentina, 2017, pp. 130-140.

[212] T. Besker, A. Martini, and J. Bosch, “Software developer productivity loss due

to technical debt—A replication and extension study examining developers’

development work,” Journal of Systems and Software, vol. 156, pp. 41-61, 2019.

[213] C. Maslach, Schaufeli, W. B., & Leiter, M. P., “Job burnout,” In: Annual Review

of Psychology, 52, 397-422. doi:10.1146/annurev.psych.52.1.397, 2001.

[214] V. Braun, and V. Clarke, “Using thematic analysis in psychology,” Qualitative

research in psychology, 3(2), pp. 77-101, 2006.

[215] M. Vaismoradi, H. Turunen, and T. Bondas, “Content analysis and thematic

analysis: implications for conducting a qualitative descriptive study,” Nursing

& Health Sciences 15(3), pp. 398-405, 2013.

[216] H. Wickham, "ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag

New York," Springer Publishing Company, Incorporated, 2009.

[217] H. Ghanbari, T. Vartiainen, and M. Siponen, “Omission of quality software

development practices: A systematic literature review,” ACM Computing

Surveys, vol. 51, no. 2, 2018.

[218] R. C. Barnett, R. T. Brennan, and K. C. Gareis, “A closer look at the

measurement of burnout,” Journal of Applied Biobehavioral Research, vol. 4,

no. 2, pp. 65-78, 1999.

[219] Y. Guo et al., “Tracking technical debt - An exploratory case study,” In: 2011

27th IEEE International Conference on Software Maintenance (ICSM), 2011,

pp. 528-531.

[220] C. Seaman, “Using Technical Debt Data in Decision Making: Potential Decision

Approaches,” Managing Technical Debt (MTD), 2012 Third International

Workshop, pp. 45-48, 2012.

[221] S. McConell, "Managing Technical Det presentation at ICSE 2013," 2013.

[222] U. Flick, An introduction to Qualitative Research, 2009.

[223] D. Moitra, "Managing Organizational Change for Software Process

Improvement," Software Process Modeling, S. T. Acuña and N. Juristo, eds., pp.

163-185, Boston, MA: Springer US, 2005.

[224] N. Zazworka et al., “A case study on effectively identifying technical debt,” In:

Proceedings of the 17th International Conference on Evaluation and Assessment

in Software Engineering, Porto de Galinhas, Brazil, 2013, pp. 42-47.

[225] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software development

teams manage technical debt? – An empirical study,” Journal of Systems and

Software, vol. 120, no. Supplement C, pp. 195-218, 2016.

[226] J. Holvitie, and V. Leppanen, “DebtFlag: Technical debt management with a

development environment integrated tool,” In: Managing Technical Debt

(MTD), 2013 4th International Workshop on, 2013, pp. 20-27.

[227] F. A. Fontana, R. Roveda, and M. Zanoni, “Tool support for evaluating

architectural debt of an existing system: an experience report,” In: Proceedings

of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 2016,

pp. 1347-1349.

[228] A. Martini, and J. Bosch, “The magnificent seven: towards a systematic

estimation of technical debt interest,” In: Proceedings of the XP2017 Scientific

Workshops, Cologne, Germany, 2017, pp. 1-5.

www.manaraa.com

361

[229] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li., “Identifying self-admitted

technical debt in open source projects using text mining,” Empirical Software

Engineering. 1-34. Research Collection School Of Information Systems, 2017.

[230] M. Waseem, and N. Ikram, "Architecting activities evolution and emergence in

agile software development: An empirical investigation initial research

proposal," Lecture Notes in Business Information Processing, 2016.

[231] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt: towards a

crisper definition report on the 4th international workshop on managing

technical debt,” SIGSOFT Softw. Eng. Notes, vol. 38, no. 5, pp. 51-54, 2013.

[232] M. Chicote, “Startups and Technical Debt: Managing Technical Debt with

Visual Thinking,” In: 2017 IEEE/ACM 1st International Workshop on Software

Engineering for Startups (SoftStart), 2017, pp. 10-11.

[233] M. Unterkalmsteiner et al., “Software Startups – A Research Agenda,” e-

Informatica Software Engineering Journal, vol. 10, no. 1, pp. 89–123, 2016.

[234] S. M. Sutton, “The role of process in software start-up,” IEEE Software, vol. 17,

no. 4, pp. 33-39, 2000.

[235] M. Crowne, “Why software product startups fail and what to do about it.

Evolution of software product development in startup companies,” In: IEEE

International Engineering Management Conference, 2002, pp. 338-343 vol.1.

[236] S. Gralha, D. Damian, A. Wasserman, M. Goulao, and J. Araujo, “The Evolution

of Requirements Practices in Software Startups,” In: International Conference

on Software Engineering (ICSE), to appear, 2018.

[237] J. Yli-Huumo, T. Rissanen, A. Maglyas, K. Smolander, and L.-M. Sainio, “The

Relationship Between Business Model Experimentation and Technical Debt,”

In: Software Business, Cham, 2015, pp. 17-29.

[238] "https://www.sonarqube.org/."

[239] "https://anacondebt.com/."

[240] P. A. Gompers, “Grandstanding in the venture capital industry,” Journal of

Financial Economics, vol. 42, no. 1, pp. 133-156, 1996.

[241] A. Grossman, Postmortems from Game Developer: New York: Focal Press.,

2003.

[242] G. K. Hanssen, T. Stålhane, and T. Myklebust, "What Is Safety-Critical

Software?," SafeScrum® – Agile Development of Safety-Critical Software, G.

K. Hanssen, T. Stålhane and T. Myklebust, eds., pp. 17-29, Cham: Springer

International Publishing, 2018.

[243] F. Duncan, “At the Sharp End: developing and validating Safety Critical

Software,” In: Achieving Systems Safety, London, 2012, pp. 225-235.

[244] D. Feitosa et al., “Design Approaches for Critical Embedded Systems: A

Systematic Mapping Study,” In: Evaluation of Novel Approaches to Software

Engineering, Cham, 2018, pp. 243-274.

[245] A. B. Bujok et al., “Approach to the development of a Unified Framework for

Safety Critical Software Development,” Computer Standards & Interfaces, vol.

54, pp. 152-161, 2017.

[246] R. Kasauli, E. Knauss, B. Kanagwa, A. Nilsson, and G. Calikli, “Safety-Critical

Systems and Agile Development: A Mapping Study,” In: 2018 44th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA),

2018, pp. 470-477.

https://www.sonarqube.org/
https://anacondebt.com/

www.manaraa.com

362

[247] J. Pedersen Notander, M. Höst, and P. Runeson, “Challenges in Flexible Safety-

Critical Software Development – An Industrial Qualitative Survey,” In: Product-

Focused Software Process Improvement, Berlin, Heidelberg, 2013, pp. 283-297.

[248] H. Ghanbari, “Seeking Technical Debt in Critical Software Development

Projects: An Exploratory Field Study,” In: Proceedings of the 2016 49th Hawaii

International Conference on System Sciences (HICSS), 2016, pp. 5407-5416.

[249] D. S. Cruzes, and T. Dyba, “Recommended Steps for Thematic Synthesis in

Software Engineering,” In: 2011 International Symposium on Empirical

Software Engineering and Measurement, 2011, pp. 275-284.

[250] A. Sharma, M. Kumar, and S. Agarwal, “A Complete Survey on Software

Architectural Styles and Patterns,” Procedia Computer Science, vol. 70, pp. 16-

28, 2015.

[251] Z. Codabux, and B. J. Williams, “Technical Debt Prioritization Using Predictive

Analytics,” In: 2016 IEEE/ACM 38th International Conference on Software

Engineering Companion (ICSE-C), 2016, pp. 704-706.

[252] D. Falessi, and A. Voegele, “Validating and prioritizing quality rules for

managing technical debt: An industrial case study,” In: Managing Technical

Debt (MTD), 2015 IEEE 7th International Workshop on, 2015, pp. 41-48.

[253] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T. Amanatidis,

“Estimating the breaking point for technical debt,” In: 2015 IEEE 7th

International Workshop on Managing Technical Debt (MTD), 2015, pp. 53-56.

[254] W. Snipes, B. Robinson, G. Yuepu, and C. Seaman, “Defining the decision

factors for managing defects: A technical debt perspective,” In: Managing

Technical Debt (MTD), 2012 Third International Workshop on, 2012, pp. 54-

60.

[255] R. Reboucas De Almeida, U. Kulesza, C. Treude, D. Cavalcanti Feitosa, and A.

H. G. Lima, “Aligning technical debt prioritization with business objectives: A

multiple-case study,” In: Proceedings - 2018 IEEE International Conference on

Software Maintenance and Evolution, ICSME 2018, 2018, pp. 655-664.

[256] S. L. Pfleeger, and B. A. Kitchenham, “Principles of survey research: part 1:

turning lemons into lemonade,” SIGSOFT Softw. Eng. Notes, vol. 26, no. 6, pp.

16-18, 2001.

[257] G. M. Sullivan, and A. R. Artino, Jr., “Analyzing and interpreting data from

likert-type scales,” Journal Of Graduate Medical Education, vol. 5, no. 4, pp.

541-542, 2013.

[258] T. Besker, A. Martini, and J. Bosch, “Time to Pay Up - Technical Debt from a

Software Quality Perspective,” Proceedings of the 20th Ibero American

Conference on Software Engineering (CibSE) @ ICSE17, 2017.

[259] T. Besker, A. Martini, and J. Bosch, “Technical debt triage in backlog

management,” In: Proceedings of the Second International Conference on

Technical Debt, Montreal, Quebec, Canada, 2019, pp. 13-22.

[260] S. M. U Gneezy, P Rey-Biel, “When and why incentives (don't) work to modify

behavior,” Journal of Economic Perspectives 25 (4), vol. 1261, pp. 191-210,

2011.

[261] P. Milne, “Motivation, incentives and organisational culture,” J. Knowledge

Management, vol. 11, pp. 28-38, 2007.

[262] S. Bala, and J. Mendling, “Monitoring the Software Development Process with

Process Mining,” In: Business Modeling and Software Design, Cham, 2018, pp.

432-442.

www.manaraa.com

363

[263] M. J. Bateman, and T. D. Ludwig, “Managing Distribution Quality Through an

Adapted Incentive Program with Tiered Goals and Feedback,” Journal of

Organizational Behavior Management, vol. 23, no. 1, pp. 33-55, 2004.

[264] F. S. F. Soares, G. S. d. A. Junior, and S. R. d. L. Meira, “Incentive Systems in

Software Organizations,” In: 2009 Fourth International Conference on Software

Engineering Advances, 2009, pp. 93-99.

[265] C. A. Ramus, “Encouraging innovative environmental actions: what companies

and managers must do,” Journal of World Business, vol. 37, no. 2, pp. 151-164,

2002.

[266] W. Snipes, V. Augustine, A. R. Nair, and E. Murphy-Hill, “Towards recognizing

and rewarding efficient developer work patterns,” In: 2013 35th International

Conference on Software Engineering (ICSE), 2013, pp. 1277-1280.

[267] Y. Wang, and M. Zhang, “Penalty policies in professional software development

practice: a multi-method field study,” In: 2010 ACM/IEEE 32nd International

Conference on Software Engineering, 2010, pp. 39-47.

[268] T. Punter, M. Ciolkowski, B. Freimut, and I. John, “Conducting on-line surveys

in software engineering,” In: 2003 International Symposium on Empirical

Software Engineering, 2003. ISESE 2003. Proceedings., 2003, pp. 80-88.

[269] A. Martini, V. Stray, and N. B. Moe, “Technical-, Social- and Process Debt in

Large-Scale Agile: An Exploratory Case-Study,” In: Agile Processes in

Software Engineering and Extreme Programming – Workshops, Cham, 2019,

pp. 112-119.

